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Spatial Screening Solitons as Particles
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Photorefractive spatial screening solitons are treated as rays using geometrical optics. The ray picture
is transformed into a classical mechanics picture, in which solitons move self-consistently as particles in
a potential created by the induced change in the refractive index. The Hamiltonian equations of motion
are integrated to yield trajectories that agree with the optical center-of-mass trajectories. The motion
in the transverse plane is found to be not central and the orbits are not closed, preventing the spiraling
of solitons.

PACS numbers: 42.65.Tg, 05.45.Yv, 42.65.Hw
Much attention is focused on the recently demonstrated
photorefractive (PR) spatial screening solitons. They are
generated when a light beam of appropriate wavelength,
intensity, and shape [1–4] is launched into a PR crystal
and a dc electric field applied in the lateral direction, to
induce self-focusing via PR screening. Solitons emerge as
a result of the self-induced change in the refractive index,
caused by the propagating light beams. Interest in spa-
tial optical solitons stems from their considerable applica-
tive potential [5–8] as well as from their strange behavior
[9–13].

The PR effect allows for the self-trapping in one (1D)
and two (2D) transverse dimensions at the very low opti-
cal power levels (microwatts) [1]. Both 1D and 2D spatial
solitons have a unique shape, which is determined by the
intensity, the strength of the external field, and the intensity
of the background illumination. In addition, incoherent 2D
solitons display anomalous interaction behavior [14] due to
the anisotropy of self-focusing in 2D, induced by the ex-
ternal field. Anomalous interaction causes the repulsion of
incoherent solitons in the direction of applied field, which
normally is not observed in Kerr-type materials, and ex-
erts profound influence on the propagation of beams. A
proper analysis of screening solitons requires three spatial
dimensions and time.

Spatial solitons in PR media do not satisfy the mathe-
matical definition of solitons, even when they propagate
as solitary waves with an unchanging beam profile.
The term spatial soliton is used in a broader sense to
describe nondiffracting self-trapped laser beams. It is
well known that solitons in integrable systems behave as
particles. In PR materials spatial solitons interact in-
elastically. Equations describing soliton interaction are
nonintegrable, which leads to the radiative and absorptive
losses, and damped motion. Nonetheless, an interesting
question to ask is whether it is possible to formulate a
quasiparticle theory of PR spatial screening solitons. This
question is addressed in this Letter [15].
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The short answer to the question posed is—yes. How-
ever, there are some reservations. The answer is an un-
equivocal yes only for the well-defined single solitons and
well-separated pairs. For the strongly interacting overlap-
ping solitons the answer is maybe. The problem is that the
strongly interacting beams deform strongly. They spread,
and the identity of individual solitons is questionable. The
soliton trajectory, although defined at all times, loses its
obvious meaning.

The trajectory of the soliton is defined as the spatial
expectation value of its transverse coordinates [10,16]
weighted by the transverse intensity,
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where A�x, y, z� is the slowly varying envelope of
the beam, and It is the total transverse intensity,
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tive mass. The slowly varying envelope obeys the paraxial
wave equation for the beam, which is of the form
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The beam propagates in the z direction, with the vacuum
wave number k. The operator � is the transverse gradi-
ent, n0 is the unperturbed refractive index of the crystal,
and n2 � n2�jA�x, y, z�j2� is (the square of) the refractive
index, changed by the propagating beam. The change in
the refractive index is an all-important quantity. On one
hand, it is proportional to the space-charge field generated
by the PR effect; on the other hand, it creates the quasi-
particle potential in which the soliton moves.

According to the theory of the PR effect
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where reff is the effective component of the electro-optic
tensor, and Esc is the space-charge electric field, produced
by the redistribution of charges in the crystal. The space-
charge field is obtained from the Kukhtarev equations for
the PR effect,

� ? �Esc 1 �Esc ? � lnI � 2
kBT

e
�=2 lnI 1 �� lnI�2� ,

(4)

where I � 1 1 jAj2 is the total light intensity (measured
in units of the saturation intensity), kB is Boltzmann’s con-
stant, T is the temperature, and e the electronic charge. In
this manner the system of Eqs. (2) and (4) is closed. Nu-
merical treatment of this system is a formidable problem.
It is addressed in our other publications [16]. The aim of
this paper is to introduce a geometrical optics approach,
which offers an alternative, mechanical interpretation and
leads to improved understanding.

The basic law of geometrical optics is Fermat’s prin-
ciple, according to which the variation of the optical path
between points P and Q in a medium with the index of
refraction n is zero,
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Since the line element is ds � �1 1 �x2 1 �y2�1�2dz, one
immediately obtains the optical Lagrangian

L � n�1 1 �x2 1 �y2�1�2, (6)

and can write the Lagrangian equation
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which is known as the ray equation. The vector �r �
�x, y, z� denotes the position along the ray propagating
from P to Q. The dot in Eq. (6) indicates the derivative
with respect to z, which plays the role of time. Using the
rules of classical mechanics, one finds the optical Hamil-
tonian

H � 2�n2 2 p2 2 q2�1�2, (8)

where the momenta
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, q � n
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are the optical direction cosines of the ray [17]. In the
paraxial approximation the direction cosines are small.
The derivatives with respect to s then become the deriva-
tives with respect to z. The Lagrangian and Hamiltonian
functions become

L �
n
2
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and the ray propagation is governed by the corresponding
equations of motion. A mechanical interpretation is that
84
FIG. 1. Transverse distributions of the change in the refractive
index Dn�n0 for two solitons. Bright regions depict potential
wells. The magnitude of the change is �1024. (a) Attracting
solitons perpendicular to the external field. (b) Repelling soli-
tons along the external field. (c) Slanted attracting solitons.
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the ray can be regarded as the path of a particle with mass
n moving in a potential V � 2n [18]. The quantization of
the Hamiltonian leads to the paraxial wave equation [17],
which is the wave counterpart of the paraxial ray equa-
tion. The connection with spatial solitons is established by
viewing the soliton as a bundle of rays.

In our understanding an optical soliton is a focused beam
of light boring an optical path through the crystal. It
is composed of many rays, each carrying an appropriate
amount of light energy. In the mechanical picture they act
as a system of particles. Hence, we assume that the soliton
trajectory, as introduced above, represents the trajectory of
the center of mass of such a system. The transverse coor-
dinates of the soliton position �x�, �y� act as the canonical
coordinates of the solitonic particle. The motion of the
FIG. 2. Trajectories of a single soliton and a pair of solitons, obtained by the full numerical integration (symbols) and the particle
approximation (lines). (a) Transverse �x, z� position at T � 300 K. The soliton bends in the direction of applied field. The diffraction
length LD equals 3.5 mm and the beam width w � 11.5 mm. (b) Trajectories in the transverse �x, y� plane at T � 0. The initial
positions are denoted by A and B. Solitons rotated about each other for �p. (c) Transverse momenta of the two solitons. They
bounced off the potential barrier at the inflection points. (d) Total angular momentum of the pair as a function of the propagation
distance. The momentum reverses its sign after each bounce.
particle is governed by the Hamiltonian equations for the
center of mass
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Such an interpretation is either approved or disproved by
comparison with the full numerical integration of Eqs. (2)
and (4). Nevertheless, use of geometrical optics is justi-
fied, as the dimension of solitons is large compared to the
wavelength, diffraction is absent, and incoherent solitons
are considered.
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Equations (2) and (4) are integrated by the method de-
scribed elsewhere [16]. The computed value of n is used to
evaluate the forces in Eqs. (11), which are then integrated
separately. Material parameters used in simulations corre-
spond to the values for SBN crystals found in experiment
[9,10]. We launch either one or two Gaussian beams.

When a single beam is launched into the crystal, one
first observes self-focusing into a soliton shape, oscillation
of the two beam diameters, and bending in the direction
of applied field, caused by the temperature-dependent dif-
fusion field in Eq. (4). The launching of two incoherent
beams in the plane of applied fields leads to the anomalous
interaction of resulting solitons [10]. Overlapping solitons
attract and well-separated solitons repel. Beams launched
in the plane perpendicular to the direction of applied field
only attract [16]. These differences stem from the distri-
bution of the refractive index change, which acts as a po-
tential well in which the pair of solitons self-consistently
moves (Fig. 1). Owing to the shape of the potential, the
beams launched skewed to the direction of applied field al-
ways initially rotate about each other. A question has been
raised in the literature [9,10] whether this rotation can be
prolonged into the spiraling of solitons. The particle pic-
ture provides an answer.

Figure 2 displays beam trajectories of the single and two
interacting solitons, computed by the full numerical and
the particle methods. Complete agreement is evident. The
knowledge of mechanical quantities allows for a simple ex-
planation of many salient features of optical solitons, such
as the apparent inertia of intense solitons, attractive as well
as repulsive forces between them, and the lack of closed
orbits in the transverse plane. Crucial in the picture is the
refractive index change, which acts as the potential gen-
erating forces between solitons. The total momentum is
conserved, but the angular momentum is not, and the soli-
tons perform complicated motion (Fig. 2). They bounce
between potential shoulders along the direction of exter-
nal field, reversing the sense of rotation after each bounce,
and eventually are arrested by the potential well perpen-
dicular to this direction. Initial rotation is followed by the
oscillation perpendicular to the direction of applied field.
Nonconservation of the angular momentum indicates that
the transverse trajectories cannot be conical sections. The
potential presented in Fig. 1 is anisotropic and the forces
acting on solitons are noncentral, preventing closed orbits
in the transverse plane. This precludes an indefinite spi-
raling of solitons, in agreement with our previous results
[10,16].
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713 (1998); A. Stepken, M. R. Belić, F. Kaiser, W. Kró-
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