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Self-organization and Fourier selection of optical patterns in a nonlinear photorefractive
feedback system
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The formation of patterns in two transverse dimensions in photorefractive two-wave mixing with a single
feedback mirror is investigated theoretically. We perform numerical simulations of th@iul))-dimensional
nonlinear model equations, displaying the breakup of the unstable annulus of active modes into hexagonal
spots. Analytically we derive amplitude equations of the Landau type for patterns with rhombic- and
hexagonal-mode interaction and discuss the stability and coexistence of transverse planforms in the photore-
fractive feedback system. A strong renormalization for the hexagon amplitude is determined, and its conse-
quences for pattern formation using Landau formalism are discussed. In particular, the stability of regular
substructures of a dodecagonal spot arrangement is investigated and square-hexagon competition is predicted.
We use an invasive Fourier-filtering technique for the selection of unstable patterns, such as stripes and
squares. The longitudinal propagation of the critical and higher-order modes of the self-organized structures
and the impact of a Fourier filter on the mode propagation within a nonlinear bulk photorefractive medium is
studied in detail.
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[. INTRODUCTION able attention recently. Theoretical studies of the competition
of these two types of patterns, which belong to different
Spontaneous pattern formation is the topic of intensivesymmetry classegl6] and cannot simultaneously exist on a
research in many fields of science concerned with dissipativepatially periodic lattice, may lead to spatially aperiodic pat-
structures in nonequilibrium systems. Much effort has beererns (quasipatternsof 12-fold symmetry, such as dodeca-
addressed to a universal understanding of the formation ajons[17-19. Their existence has been confirmed in a vari-
complex spatiotemporal patterf$—3]. In the vicinity of a ety of experimental observations in different pattern-forming
bifurcation point, the concept of order-parameter equationsystems within recent yeaf20-232.
of synergetic$4] has been widely applied and proven a use- Ever since the initial experimental observations of hex-
ful tool in analyzing the mode-selection mechanisms and thagonal pattern$23—25 due to counterpropagation of two
stability of patterns in various physical systems, such as suleptical beams in photorefractivié®’R) crystals, pattern for-
face waves|[5], ferromagnetic systemg$6,7], reaction- mation through PR two-wave mixing has become a growing
diffusion systemg8,9], Benard-Marangoni convectiofl0],  field of nonlinear optic§26—2§. In particular, the formation
and nonlinear optical systenpi$l—14. Despite its universal of patterns in a PR crystal with an external feedback mirror
character, the question of pattern selection and competitiohas been the topic of a number of recent articles. Structures
for a specific system still remains one of the interesting andguch as stripes and squares have been idenfZ&@9, and
demanding problems. very recently experiments on the competition of dynamical
Symmetries and the type of bifurcation determine thepatterns[29,30, multistability [31], and the appearance of
form of the order-parameter equations. The coefficients redodecagons have been reportdd]. PR crystals hold prom-
flect the specific characteristics of the underlying system anée for parallel optical data and image processing, hence the
play an important role for the pattern-selection process. Pdnterest in transverse spatiotemporal structures in such me-
riodic planar patterns, such as stripes, rhombi, squares, artia.
hexagons possess a translational symmetry. Among these Experiments have been accompanied by theoretical analy-
regular structures the hexagonal patterns have played an owes of transverse modulational instabilit{8—35. How-
standing role, not merely because of the beauty of their arever, there are only a few theoretical investigations beyond
rangement but also because of their specific properties, sudimear instability that analyze and explain the appearance of
as the broken inversion symmetry and the resonant interathe variety of patterns. In a paper by Lushniki®6] the
tion between fundamental modes, which makes them thetabilization of the hexagonal-mode structure is explained
dominant patterns in systems that physically support theising an amplitude-equation formalism. Three coupled Lan-
breaking of inversion symmetry. dau equations were derived describing the coexistence of
The natural coexistence of stripes and hexagons hastripes and hexagons. It was stated that the corresponding
widely been discussed in terms of Landau hexagon equaoefficients are valid more qualitatively than quantitatively
tions, see, e.g., Ref15]. The possible coexistence of squaresdue to a substantial renormalization. Saturation of explosive
and hexagons is more involved and has attracted consideirstabilities, for which higher-order wave processes are nec-
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essary, was obtained by a numerical experiment taking into X
account a larger number of sum and difference harmonics in R
the series expansion.
The cooperative effect of diffraction and nonlinear beam —_— |H ----------- .
coupling leads to the formation of transverse patterns. Owing A Q -
to diffraction of optical beams, patterns arise in a plane per- ! |H A2
pendicular to the propagation direction. The optical beams
become spontaneously unstable against transverse modula-

tions that grow due to an absolute instability out of the ini-  FIG. 1. Two-wave mixing configuration in the reflection geom-
tially smooth beam and grating profiles. The two-wave mix-etry with a feedback mirror MA; is the pump and, is the re-

ing between forward and backward propagating opticaklected beamQ is the grating amplitude indicates the direction of
beams induces a refractive-index grating, which in turnpropagation, and is one of the two transverse dimensiohss the
couples the beams by Bragg diffractif8i7]. Bragg diffrac-  crystal length and is the distance to the feedback mirror.

tion is present because of the finite longitudinal extent of the

crystal, i.e., a volume-index grating is formed whose gratingicularly true for wave mixing with a PR nonlinearity, where
period is much shorter than the medium length. The counterthe patterning process takes place in a medium of finite lon-
propagation of optical beams and the choice of crystal oriengitudinal extent. Here the Fourier filter acts as a strong or
tation favors the formation of reflection gratings. The cou-weak disturbance of the mirror boundary conditions in the
pling between beams leads to an exchange of energy and tlease of invasive or noninvasive control methods, respec-
pump beam is depleted. This pump depletion is not neglitively. We will not give this proof here but instead discuss
gible when dealing with pattern formation in a PR systemsome advantages and problems that the Fourier-filtering
with optical feedback. It is the origin of tremendous difficul- technique, which has been used so far in experiments with
ties in the theoretical treatment, both analytical and numerithe PR feedback syste®0,47—-49, poses from a theoretical
cal. point of view.

Another important feature of PR wave mixing that is usu- Our investigation proceeds along two tracks, analytical
ally neglected, because of the difficulties in analytical andand numerical. After introducing the model of the PR feed-
numerical treatment, regards the temporal evolution of thdack system(Sec. I), we perform a linear stability and a
refractive-index grating, which is dependent on the total lightnonlinear amplitude analysis, and discuss the threshold be-
intensity. The nonuniform distribution of the total light inten- havior and the stability oN-modal transverse patterns by
sity, due to pump depletion along the propagation directiormeans of a Landau description, thereby neglecting slow spa-
and spatiotemporal modulation in the transverse plane, rdial variations(Secs. Il and 1. Numerically, we discuss the
sults in a photorefractive time constant that varies whithinself-organization of PR hexagofSec. ) and the effects of
the crystal. The PR medium reacts faster in more illuminatedrourier filtering on regular patterns in a bulk PR medium
regions and the buildup of refractive-index changes proceeds$ec. V). Section VII brings conclusions.
at different paces. The transient dynamics of one-
dimensional spatiotemporal patterns has been shown to slow Il. WAVE-MIXING EQUATIONS
down by a few orders of magnitude compared to the model
with constant relaxation timg38], however the coexistence ~ The model for the PR wave mixing through the formation
of stationary patterns and the Fourier selection is not afof a reflection grating originates from the charge-transport
fected. Therefore, we will present numerical simulations formodel of Kukhtarev et al. [50]. Rigorous solution of
the model with the constant-relaxation-time approximation. Kukhtarev’s nonlinear material equations is computationally

In recent years research activities have focused on thexpensive[51], particularly in the context of transverse-
manipulation and control of patterns in spatially extendedPattern formation in the PR feedback system. Hence the need
continuous system{89-44. Triggered by methods of chaos for an approximation of the grating response, which is as
control[45,46], which have been successfully applied to sta-Simple as possible, but good enough to account for the inter-
bilize unstable orbits in purely temporal dynamics, it is de-esting phenomena observed in pattern formation. Such a
sirable to establish analogous methods for stabilization ofnodel of wave mixing is introduced below.
unstable states in spatiotemporal systems. The amplitude- The setup for observation of transverse patterns in PR
equation formalism, where applicable, provides an analyticalwo-wave mixing(2WM) with a single feedback mirror is
method to obtain the unstable pattern states, so that the pdtresented in Fig. 1. The wave-mixing process is described by
terns can be directly compared when selection and stabilizghe slowly varying envelope paraxial equations for the two
tion methods are applied. Such methods would exert an imPeams[38] in two transverse dimensions
pact on technological applications in, for example,

0 L L+D

information processing, for which optical devices have I A +iIfVEA;=—QA,, (13
promising perspectives.
Although manipulation of spatial structures in the Fourier —aZA2+ifoA2= Q*A4, (1b)

domain is now one of the most important concepts in modern
nonlinear optics, a rigorous theoretical proof of its power towherez is the propagation coordinate scaled by the crystal
stabilize unstable eigensolutions is still missing. This is pardength L, andV? is the transverse Laplacian scaled by the
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beam waistw,. The parametef =L/(2k,w3) represents a lll. LINEAR STABILITY ANALYSIS
measure of the magnitude of diffraction and is proportional
to the inverse of the Fresnel number. Héggedenotes the
wave number in the longitudinal direction within the crystal.
Absorption losses have been neglect€dis the complex
amplitude of the reflection grating, whose temporal evolutio
is described by a relaxation equation of the form

Linear stability of two counterpropagating optical beams
with a PR nonlinearity has been discussed in a variety of
previous works[33—35. Analytical threshold conditions
were obtained under certain constraints. Mirror reflectivities
Nower than unity and the effect of intensity dependence of the
PR relaxation time immediately result in a nonautonomous
ALA* stability problem, and analytical expressions no longer exist.
;, 2) In the following we present a semianalytical approach to find
|AL2+ A2+ 1 4 the primary threshold for the onset of two-dimensional trans-
verse patterns in the feedback system without imposing such
wherel is the wave coupling constant. In PR wave mixing, constraints. Thus we are able to discuss important effects
charge-transport processes yield an, in general, intensityoncerning different mirror reflectivities and intensity-
dependent relaxation time(l)=(I,/1)"7pg, with the total dependent PR relaxation time.
intensity| =|A;|*+|A,|*+14. The exponenk describes the The primary threshold is determined by the linear insta-
characteristic behavior of nonlinear charge-diffusion pro-pility of the steady-state plane-wave field amplitudes, de-
cesses present in PR materials. In the standard Kukhtargyoted byA%(z) andAS(z), and the corresponding amplitude
model, assuming linear medium response, the time constagk the refractive-index gratin@°(z). The linear eigenspace
is calculated to be inversely proportional<1) to the total  constitutes the base for the subsequent nonlinear bifurcation
intensity. Nonlinear material response and nonlinear chargesnalysis. Therefore we consider the time and space evolution

diffusion processes lead to valuessof 1. In particular, nu-  of the perturbations, , andq from the homogeneous fixed-
merical investigation of Kukhtarev's band-transport modelpoint amplitudes,

yielded a sublinear dependeni&l] with «~0.7, which is

()9 Q+Q=I

characteristic of slowed diffusion processes. Al;z(x,y,z,t)=A(l);2(z)[1+al;z(x,y,z,t)], (33
The dark intensityl 4, due to thermal background illumi-
nation, is considered small{~10"°I,) as compared to the Q(x,y,z,)=Q%2)[1+q(x,y,z1)]. (3b)

intensity of the input pump beam,,=|A;(x,y,z=0)|% . .
Sincepr s & constant that depends only on material propgegd S10S N S T e the tem-
erties, it defines a natural scaling of time. P

The assumption in Eq$l) and(2) is that the dynamics of poral Laplace space{>)), whereq can be eliminated, and

envelopes is slaved to the grating amplitude because of itgr}i ;g]r(:;]emzed propagation of perturbations is cast into a ma-

slow evolution, and that the spatial distribution @fis de-
termined by the spatial distribution of the beam envelopes, d,a=A(z,K? N)a(z,K2\), (4)

with the Debye-screening length much shorter than the

wavelength of a transverse pattern. Although this model mayvhere K? is the square of the transverse wave vector. The
look extremely simple, it still requires much computational vector a=(a,,a},a,,a3)" then contains the Fourier-
effort. Since the first experimental evidence of hexagonalaplace components of the perturbations. Choosing an ap-
patterns in 199823], to our knowledge we believe ourselves propriate basis via a transformatioh(see Appendix A the

to be the first ones to present numerical simulations of tranghysics involved in the linear stability analysis for PR wave

verse patterns in-81 dimensions. mixing becomes more obvious. The stability matrix reads as
|
mal+(1-m3)g(h) —fK2 0 0
fK? 0 0 —J1-m2g(\)
A=uU~t . » u. ®)
—v1-mgg(\) 0 0 —fK
0 0 fK?2 g(™)

Note that the steady-state fixed-point solution contributes t@nd through the temporal variations@that are, due to the

stability through its modulation depth PR medium response, given by
oo=r 270 @)
(2= 2\1%(2)15(2) © J AT(19)+1
o(2) = ———2—
12(2)+15(2) Owing to pump depletion, the fact thaty(z)<1, and the
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intensity-dependent relaxation time, the nonautonomous Eq. (a)

(4) cannot in general be solved analytically. Nonetheless, a 12
formal solution is given by(L)=F(L)a(0), where (z) is ot
the linear flow matrix. Hence the problem of linear stability
is solved if /(L) is known. Separatingd into tr.4 and its 0 6}
trace-free partd;= . A—tr A/4, the linear flow matrix can be
calculated from

A

X H 6G(2). (8) fK®

F(L) ex;(f tr A(s)ds

Since bothmg(z) and 7{1°(z)] are monotonous functions,

one is not faced with the Floquet problem, and the product 3 6 ]
can be obtained through a repeated multiplication of infini- 4l h

tesimal rotation matrice$G(z) = exf J% %A(s)ds], taken v ot ]
at subsequent pointsin the crystal. These matrix products 2pTTTTTTTTT 1
have to be evaluated numerically. Taking into account the 0 . .
mirror boundary conditions 0.001 0010 0100  1.000
R
a;(x,y,01)=0, (9a)

FIG. 2. Threshold curve fob=0. (a) Coupling strengtl” as a
a,(x,y,L,t)= (TF)fl{eXp(i ) Te[as(X,Y, L,t)]}, (9b) function of the transverse wave numiiefor a stationary instability
with R=1 (lower curve and R=0.01 (upper curve (b) Depen-

one invertsF(L) into a scattering matrixS. The quantity¢ dence of the critical valuel,, (solid) andK . (dashedion the mirror
=2fK?D/(nyL) is the propagation phasp, being the dis-  reflectivity R.
tance from the crystal to the feedback mirrdg, denotes the
Fourier transform, and, is the crystal's homogeneous re- way down to abouR=0.1, and it noticeably increases only
fractive index. The poles of the scattering matrix determinefor much lower reflectivitiegFig. 2(b)]. The reason for this
the properties of an absolute instability and lead to thdies in the PR gain of two counterpropagating beams, so that

threshold conditior{in the I/ basis, only for small values oR the modulation depth in the inter-
action region starts deviating from unity. The spatial fre-
def 711t Foo— Fro— For= D) (Fru— Foo— Frot Far)] quency of transverse modulations remains nearly unaffected.
-0, (10) When the mirror is moved towards larger feedback dis-
tances D>0), the type of threshold that is predicted by
where F;, are 2<2 submatrices off(L) and linear stability analysis strongly depends on the model for
the temporal evolution. In the case of the model witk 0
—cog¢) sin(¢) there exists a critical mirror distand2.~0.25 at which an
D(¢p)= sin(¢)  codd) (1) oscillatory instability should occuiFig. 3) and the threshold

values differ considerably. This, however, is an artifact of the

is a matrix involving the propagation phase. Under speciaponstant—relaxation-time approximation, and it is prominent
constraints for the mirror reﬂectivitR: 1, which |mp||es for reflectivities above 90%. The model that takes into ac-
that the modulation deptiy(z)=1, and for the constant- count the inverse intensity dependenee=(1) displays only
relaxation-time approximation(=0), Eq. (10) can be ex- stationary structures. This is in perfect agreement with ex-
pressed analyticallj38]. perimental observationg5,26,31. For reflectivities below
The threshold behavior at the primary instability is dis- 90%, any value of will give the same stationary instability
p|ayed in F|g 2 for the case =0. It does not depend on the threshold. In Flg 3 we have shown the caseRer0.5. The
characteristic exponent for the PR relaxation time, because cfitical coupling strength slightly deviates for large mirror
for any R one finds only stationary bifurcations. FB=1  distances, but the spatial frequency, i.e., the angle between
the homogeneous plane-wave solution loses stability at theump and sideband beams in the optical far field, is almost
threshold coupling constanf.L~3.819. A small band indistinguishable. So, discrepancies in the sideband angle
around the critical transverse wave VeCfMZNZ 592 pe- arising between theory and experiment presumably do not
comes unstablgFig. 2(a)]. In two transverse dimensions this Originate from a nonideal feedback mirror.
corresponds to an annulus of unstable modes, from which the
nonlinear—mode interaction creates a specific_pattern. IV. AMPLITUDE EQUATIONS
In experiments, because of Fresnel reflections and beam-
intensity losses from optical components in the feedback The question what patterns, be they stable or unstable,
loop [29], the effective mirror reflectivity is typically lower will be formed out of the annulus of active modes can be
than unity. The threshold, however, turns out to be onlyanswered by a nonlinear bifurcation analysis. In the follow-
weakly changed by the reduction of mirror reflectivity all the ing we present a detailed derivation of coupled Landau equa-
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(a) 40 ' ' ' ' wherel°(z) =|A%(2)|2+|Ad(2)|? is the total plane-wave in-
tensity, andr®(z) =|A%(z)|?/|A3(z)|? is the ratio of plane-
wave intensities. The denominatlp, is identical to the de-
nominator of the right-hand sidehs) of Eq. (12¢). For the
general procedure of multiple-scale analysis in a bulk me-
dium, where we follow an idea of Geddesal.[11], which

is modified to account for the PR wave-mixing and grating
dynamics, it is convenient to choose a real basis for the state
vectors of deviations via the following transformati¢see

3.0 ; ; ; ; -
(b) Appendix A: (a;,a} ,a,,a5)'—-U=(U;,U,,U3,U,)" and

3.5
=

3.0

25

2.5¢ (9,9*)™—P=(P;,P,)T, which brings Egs.(12) into the
% a0 general form,
o < U
st LyxyU+ MoP=M,(P|U), (133
Lo [Doy+ D1(U) +Dyy(U]U) + - - - TP =AU
() Yo =N1(U|U)+Ny(U|0|U) + - - -. (13b)
0.5¢ T 1 Here the matrices(,.,, and D;, are the spatial- and
£ 0.0 ] temporal-derivative operators, respectively. Owing to the in-
g tensity dependence of the PR relaxation time, the temporal

—o0s5f e ] evolution contributes to lineaP,; and nonlineam; ; terms

"""" (j=1,2,...). ThematricesM, and\, are composed of the
-1.0 : . . : coefficients of the linear coupling between the field and the
00 02 04 08 08 1.0

D/(nel) grating, andM; and\j are the vectors describing nonlinear
field-grating and field-field interactions. The notations
FIG. 3. Threshold curves as functions of the mirror distabce ((j|U) and (U|U|U) are shorthands for different quadratic
for the m_odels assuming d_ifferent intensity_ dependence of the rexnd cubic terms arising in such a procedure.
laxation time: the model withc=0 (dotted ling for R=1.0, the The multiple-scale analysis is based on the fact that in the
model withx=1 (solid line) for R=1.0. The dashed line is f{®  oiqhhorhood of a bifurcation point, the spatiotemporal evo-
F 0.E(Sb\)lvclztrri]tiiglyvx?ef\vtgilzmoé(e?c}ds:wsd((i)) océg:ﬁztligg‘;gngei;‘gth lution is separable into fast and slow scales. The PR coupling
e e q c strengthl" is the bifurcation parameter, and the expansion
tions for different two-dimensional planforms. Proper nor-parametefe scales the distance from the critical polry at
malization and renormalization of the longitudinal which the modulational instability starts growing. Consider-
eigenfunctions will play an important role in determining the ing a spatially homogeneous distribution of modulation, in
coefficients for Landau equations, so that they can be quarerder to describe the pattern through a Landau-type formal-
titatively compared with numerical simulations of the full ism, one expands the bifurcation parameter, the temporal

nonlinear-model equations. variable, and the field and grating amplitudes in powers, of
The nonlinear bifurcation analysis considers the time and
space evolution of deviations from the fixed-point plane- =T +el M+eT@+... (14a
wave solutions. Upon substituting Ed8) into Egs.(1) and
(2), and retaining all nonlinear terms, one obtains t=To+ €T+ €Ty+- -, (14b)
r I v v v
aza1+ifoa1:1 s(@i—a—q—ax), (128 U=eU+ U+ eu@s. (149
+r
0 P=¢e"PM+ PP+ POy . .. (140
r
_ H 2 - _ * * .
I +ifVia, 1+ro(a1 a+o” +aiq), TheT®) are as yet unknown quantities to be determined by

(12p  the multiple-scale analysis. In the case of stripe patterns, e.g.,
one usually chooses the scaling exponent such ithat/2,

1410\« 0 therefore,a priori assuming the specific scaling behavior of
Na 7(17)aa+q a pitchfork bifurcation. We have taken=1, which leads to
the same amplitude equation and, in addition, provides for
(a;—ay)(1+a%)—ro%af—a%)(1+ay) the correct scaling behavior, corresponding to the character-

istics of the underlying bifurcation for both rhombic and hex-
agonal planforms. The latter bifurcate transcritically, 0
(120 =1 is mandatory(cf. Sec. IV B.

ro%(1+ay)(1+af)+(1+ay)(1+a3)
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(a) £8, U@+ MEP@ =L MG g (PO

\9 +My(POIOW), (179

Do1, PPN U= —Dor PO—D; 1 (M)W

+ N (UDgW)y, (17b)

b
(b) For a stationary pattern one h@gr =1, and in Eq.(17b)

one can solve for the grating variab®? and eliminate it
from Eq. (1739, in favor of an inhomogeneous ordinary dif-
ferential equation for the field variablé(?. Stable satura-
tion of the linear exponential growth for any regular-shaped
pattern is at first achieved in the third order. From the expan-
sion one finds

(©) LS., y0(3)+/\/185(3)25(2)0(1)_M82)ﬁ(1)
C X,

+ MS(PD[G@) + MS(PAID),
(183

DO,TOﬁ(S)_ NU®=— DO,TZIS(l)_ DO,TIF_;(Z)
— Dy, (U PE-D ;1 (UR) PO

_Dl,Tl(U(l)) p)
FIG. 4. Arrays of spot pairs on the annulus of active modas: SN B
Rhombic planform = 2) with the angles between the spot pairs. —Dyr, (UPIUH)P

(b) Hexagonal N=3) and(c) Dodecagonall=6) mode distribu- e o
tions. + N (UDU@) + A (U0

Even though the terms are grouped in EiBb) according + Np(U®U®I0Mm), (18b)
to their nonlinear order, these equations still describe the N ) ) o
evolution of all combinations of modes, and hence of allA Specific stationary pattern may consist of any combination
possible patterns. To study a particular pattern, one intro®f N spot pairs on the annulus. To determine which of them
duces order parametei/,=W;(T,,T,, ...), which are will result in a stable configuration, one derives the cubic
proportional to the amplitudes of critical modes on the annuSelf- and cross-coupling coefficients of all possible mode in-
lus, and may still depend on the slower time scales. Statiorferactions. Herefore it is sufficient to calculate the coeffi-
ing to K. and the amplitud&V* belonging to— K have the when a resonant interaction occurs for the hexagonal struc-
same magnitude. So, the m(l)de amplitudes occur in pairs. ture, the coefficients for the trimodal interactioN < 3).

In the first order ofe one recovers the linear problem
A. Stripes, squares, and rhombic planforms

J(1 5(1)
EE;X,yU( )+M8P( =0, (158 We start out by calculating the coefficients for the inter-
. . action of bimodal structureg=ig. 4(a)] that consist of two
DO,TOP(l)_NOU(l):O- (15b)  pairs of critical wave vectors, and thus make the specific

ansatz for the stationary rhombic pattern,
Eliminating PY) with To—\ recovers the linear instability )

problem, Eq.(4), U(l)=ﬁ(l)(Z;Kc)<jZl W, exp(iK op;) +c.c.
[ £,(K?)+ MDo(N) TNIUM

(19

2
=[d,— A(z;K2\)JU®=0. (16) 5(1):5(1)(2;}(0)(]21 W, expliK ¢p;) +c.C.

Higher orders ine describe the nonlinear interaction of spa-
tial modes and result in the amplitude equation for each off he direction of the two mode pairs has been chosen so that
the order parameters. In the second order it is p1=X andp,=x cosé+ysin 6, whered is the angle between

. (20
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the pairs. Square patterns are obtaineddferr/2 and stripes  which involves the scalar product with the adjoint homoge-

represent a degenerate case when the two spot pairs mefggous solution (z;K.) and yleldsF(l)W g, W; . In addi-

(GTP? O(; 7). | ¢ aul he i htlon to the Fredholm alternative, to avoid secular terms, it

feld ding the propagation trough the bulk PR mectum ™St be reauired thafr, Wi =0, which then puts the un-
g the propag g I’known Ir'W=0, and one can choosg=0. In this manner

this order is described by the longitudinal eigenfunction ) - .

J(2K.) of the critical mode. The propadation of modula- the Iong|tud|na_l elgenfun_ctlons in the secqnd orde_r are com-
g (Z'. c) O R . propagatior pletely determined. Their shape and their meaning for the
tions in the refractive index is captured y"(z;K;)  pattern formation will be discussed in Secs. VB and V.
=Nou®(zK,). The eigenfunctionu'® can be obtained The saturation of the linear exponential growth is at first

from the flow matrix of the linear stability problem, achieved in the third order. Here the nonlinear-mode interac-
A ) tion again generates resonant and nonresonant modes. The
uM(z,Ko) = Fz;KHuD(0), (21)  solvability condition, applied to the resonant mode, deter-

minesI"(®) and leads to the coupled amplitude equations for
where the vector of initial condition™)(0) belongs to the & rhombic pattern,
kernel of the(inverse of the scattering matrixS(K;). Thus

the eigenfunctionu®(z,K.) is defined up to an arbitrary
factor u. In pattern formation there exists no physical con-
dition to determine its value. Realizing that the real parts of 5 \W,= (' T .)W,— (g..|W,|2+g | W, D) W,.
the deviationsa, , resemble the intensity modulation of the (25b)
beam profiledl ; /I0 2 Rea; +|ay|?, with |a;|* being small
near threshold the normalization of eigenfunctions in thelThese are the well-known coupled Landau equations for
first order, using the condition that Rg(z=0K.)=1, leads rhombic planforms. They provide a universal description for
to the vaIueM=M(1)=0.0558(for D=0). The Landau coef- the self-organization of bimodal patterns, which is similar to
ficients then provide a stationary-mode amplitude, which car® second-order phase transitidr. The values of the relax-
be directly compared with numerical simulations or experi-ation rate
mental results. It turns out to be a perfect choice for the case
of s_upercritical strip_e;. and rhombi, but, ur_1fortunate|y, a b_ad :in |M87(|0)No|l](|<l)>, (26)
choice for the subcritical hexagons. We will resume this dis- ¢ c
cussion in more detail in Secs. VB and VC. ] . o

As soon as one goes to higher orders in the expansiofhe nonlinear self-coupling coefficient
nonlinear-mode interaction occurs, and spatial Fourier modes

o0 Wy = (L =T o) Wy — (g,| Wy |2+ gy Wo|2) Wy , 259

K=0, K., 2K;, andK.=K.y2(1*=cos#d) are generated. ngi@jK |,ﬁW_Mgﬁﬂ>’ (27
Consequently, the solution ansatz in the second order is of g °
the form

and the nonlinear cross-coupling coefficient
U@ =0@)(z;K=0)(|Wy|?+|W,|?+c.c) +uP(zK,)

1 . . -
_ _ c
X[Vyexp(iKcpy) + Vo expliKepz) +c.c ga_gL<UKc|m6 M), 9
+U®)(Z;2K ) [W] exp(2iK ¢py) supplemented withg, = (v | MoNo—Z|ul), where £
+W§ exﬁZich2)+c.c.]+J(Z)(Z;KQ =T'Z, for example, reflect the specific properties of the PR
_ . 2WM system under consideratidfor details onm, andn,
X{2W; W, expliK [ p1+po]) +c.c+u@(zK ) see Appendix A The order-parameter equations are known

to possess three different stationary solutions: the homoge-
neous state with the amplitud®;=0, the stripes with the
amplitudes

X{2W1W3 expl(iK [ p1—p2]) +c.cl. (22

Since the resonant mode is formally generated, the new am-

plitudesV; must be introduced. The longitudinal eigenfunc- =T VA _
tions in the second order then satisfy the equation Wi =\("'=T)/g, and W,=0, 29

- - N and the rhombi with the amplitudes
U (z;K) = A(z;K)u@(0;K)+sP(z;K). (23

|Wa|=[Wo|= V(T =T )/(g-+7p), (30)
The associated boundary-value problem has a solution when- ' 2 ¢ ’
everK#K,. For the resonant mod€=K, one has to ap- all of them with arbitrary phases.
ply the solvability condition known as the Fredholm alterna-  The cross-coupling coefficient depends only on the angle

tive theorem. It reads 0, and reflection and rotational symmetries imply 6)
R R =g(— 0)=g(6+mm), with m being an integer. It is plotted
(v(z;Ky)|sP(z;K¢)) =0, (24)  in Fig. 5@ for the parameter®=1 andD=0, which we
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a hexagonal structure. It consists of the superposition of
three spot pairgFig. 4(b)] rotated by an angle of 2/3.
Therefore, one has to determine the cross-coupling coeffi-
cientg,/;; separately. The ansatz for a stationary hexagonal
pattern reads as

SN |
] T ] i 3
—20f 777 TV ] U(1)=u(1)(z;Kc)<JZl W, exp(iKpj)+c.c.|, (3D
-40L . .
0.0 02 04 06 08 1.0 3
0 - -
iz PO=pM(zK,)| > W expiKep))t+c.c|, (32
(b) =1
0.6
where the direction of the mode pairs can be chosep,as
e[ =X, p,=(—x+y\3)/2, andps= — (x+y+/3)/2. The longi-
= tudinal eigenfunctions in the first order are again given by
0zl Eq. (2D).
In the second order, the spatial Fourier modes
=0, XK., K,.=+3K,, andK_=K_ are generated and since
0.0 - the resonant mode is excited, again new amplitidesiust
2 4 6 8 10

be introduced and one has to apply the compatibility condi-
tions in the form of the Fredholm alternatiyE&q. (24)]. In
contrast to the case of rhombi, for the hexagonal-mode inter-
equations for the bimodalN=2) interaction, with an arbitrary action one obtains a nontrivial contributiorf(l)wj
angle 6 (solid line) and forD=0. The normalization factor for all = —g,Wx W with j,k,1=1,2,3 cyclic. The coefficient be-
coefficients isp=u("~0.0558. The shaded regions indicate the longing to the resonance among critical modes is given by
angular spread of the spots due to the finite mode width. Asterisks
(*) denote the coefficients belonging to the unimodd<1) and
trimodal (N=3) interactions that dominate in these regions. Above
the dashed line the saturation is achieved in the third order. The
dotted line indicates the loss of stability of rhombic planforiis.
Resulting bifurcation diagram for stationary substructures of th — ; —
dodecagonal spot arrangemeit={ 6, separatrix branches are not %_Ooth?; noW\/J ZW:\N'* ' I-:O-r PR-ZWM withR=1 andD

. A S = e quadratic coefficient is calculated to I
shown. H, hexagonsD™, dodecagonss, stripes;Sq,_squares; ~—13.94, so theH™ branch bifurcates subcritically. The

and Rh, rhombi with an anglé= =/6. Solid (dotted lines indicate . N . L L
the stable(unstable branches. eigenfunctionu® that modifies the longitudinal behavior is
of the form

FIG. 5. (a) Cubic cross-coupling coefficierf, of Landau-type

2 e Y - nd -> - -
gn ZE@KJM 8/\/1(u(ch)| uf(lc)) —ME(P(ch)IU‘ch’)% (39)

have used in our numerical simulations. Since the number of
resonant cubic interactions between two different critical
modes is twice the number of self-interactiogég) is dis-

continuous atg=0 and =, so that the cross-coupling Here the Fredholm alternative introduces a second arbitrary

coefficientg(6— m) =29, . ;
For bimodal structures we find that the cross-coupling Co_factorp, which must not be rescaled by, for reasons to be

efficient diverges a® approaches an angle af/3, pointin discussed in Sec. V C.
9 PP 9 ' P 9 In the second order, the resonant nonlinear-mode interac-
towards the fact that the process of PR wave mixing supportﬁ

. . . n cannot stabilize linear exponential growth, as it was also
a resonant interaction between the critical modes separat% inted out in Ref[36], and the asymptotic expansion has to
by 7/3. To calculate the coefficient,,; one has to take into '

; ) . . . be carried out to third order. In this manner one obtains am-
account a third active mode, as is presented in the followin

section. In fact, when the angte approaches 0 or/3, the %Iltude equations for the hexagonal pattern, which have the

universal form
modes overlap. Because of the mode degeneracy and the

finite beam envelope, the modes have a finite spot size in the
K space, and there exists a minimal angular spr&adat
which the modes start overlapping. So, in the real physical
system the functiog(#) will behave in a continuous way.

u@(z,Ko)=puu®(z,K)+SP(z,K,). (34)

700 W= (I =T o)Wy — g, |Wy|?W; + gy W5 W
— O Wo| 2+ W5 2) Wy, (39

and analogously fowW, andW; through the cyclic permuta-
tion of indices. These are the well-known coupled Landau

For pattern formation in the PR feedback system a resohexagon equations with the hexagonal cross-coupling coeffi-
nant interaction occurs between the critical modes that forneient in the cubic order

B. Hexagonal planform
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700 Wy = (I =T o) Wy — g, W4 |?W; + g W3 W

OH - |~ ~ - - e ey o
gw/SZg_(<UKC|MONO_£|U(K2C)>+<UKC|MON1(UI((1C)|U(K10)) ) R )
- — Gyl | Wo| “+ W[ ) Wy — g ol Wi  *W,

= o . 1 . o R
—Ml<p£&>lu&”>>>+g—<w|mﬂ,3—M3n,T,3>. (36) = Gl | Ws|?+ | Wg| ) W, (38)
[+ C L C

and analogously fow, andW;, and

It consists of two partsy,;;=9%s— pugy, as a conse- TodtWy= (I =T o) W, — g, | Wy | 2W,+ g WE W
quence of Eq(34), and is in whole proportional ta.2. Here 2 2 2
92,5 denotes the the part of the cubic cross-coupling coeffi- ~ Q| W[+ [We|*) Wiy = g ryol Wi *W,
cient for whichp=0. _97/6(|W2|2+ |W3|2)W4, (39
Besides the homogeneous state and stripe patterns, the
coupled Landau hexagon equatiditsy. (35)] possess as a and analogously foWWs and W. They contain two sets of
stationary solution a regular hexagon with the amplitlil§ ~ hexagons rotated by an angle®f2, and hence allow for the
description of 12-fold quasiperiodic patterns and the compe-
tition of hexagons and squares. The coupling coefficigpts

(—1)"gy*\gi+4G(I'—T) involved in this interaction can be immediately read from
|Wi|=[W,| =|Ws|= °G : Fig. 5@a). Besides the square and the hexagon branches,

(37) whose amplitudes are given by Eq80) and (37), there
exists a branch of equilateral dodecagonal pattern with the

amplitude
where G=g_.+2g,;3. Since the phases are not arbitrary N
here, and their sum must fulfilf = ¢, + ¢, + y3=nm, one W= = W= (—=1)"gy+ Voh+4Gp(I~T)
distinguishes the positive hexagonsl%) with integer n ! 6 2Gp ’
even, and the inverted haxagor$™) with n odd. The states (40)
with discrete total phas& belong to the so-called phason ) ,
modes. They arise for planforms witiN2=5 [17]. where Gp =0+ 92+ 293+ 29-6. We are interested in

the stability for each of these three patterns, which are the

only potentially stable stationary solutions. The stability of
C. Stability and coexistence of photorefractive planforms the general Landau dodecagon equations was obtained and
discussed in previous work&7,52. Here we discuss impor-
tant results for the PR feedback system. We find that hexa-
gons dominate near primary threshold but there exists a sec-
ondary threshold

From the coefficients of bimodal and trimodal interaction
that were calculated in the previous sectipRiy. 5a)], we
are now able to determine analytically the stability of plan-
forms with anyN-modal structure occurring in the PR feed-
back system. We consider the situation where the system 9.+9
develops almost perfect patterns and restrict the stability qu—FC:gE‘ m Dml2 (41)
analysis of Landau equations to spatially homogeneous per- (9= Gzt Gmiz— Gms)”
turbations(see, e.9.[17,18). Among the patterns witiN ) )
=2 one generically finds that the stripes are stablg,f With I's-~6.78, at which the squares become stable and
>g.., whereas the rhombi become stablgji&g... For the coe_xllst with the hexagon_s. Along this sque_lre—hexagon com-
PR system considered here, in particular, the square patteRfttION, & parameter region emerges starting at
(6= /2) is stable with respect to the stripes, and narrow
rhombi (with #=7/6) are unstable. They both bifurcate su- re—T _1 5 397297 29m3+ 69e (42)
percritically. In general, a stripe pattern can never be stable D e g3H (07+ 20,3~ Qo zgwle)Z’
in the parameter region of a system permitting a stable
square pattern, because there exists no separatrix solutionith I'yL~6.71, in which a stable dodecagonal pattern ap-
For the hexagonal patterndNE3), only the subcritical —pears, so that tristability is possible. The stability scenario of
branch shows stable solutions. For the PR system we hawbe stationary substructures of dodecagonal planforms is de-
0.0, and the stripes become stable while the hexagonpicted in Fig. %b). Whether the squares or the dodecagons
become unstable for some higher valuesl'ofWithin the  become stable first, depends sensitively on the values of the
framework of N=3 pairs this leads to the phenomenon of cross-coupling coefficients. The coexistence of squares and
stripe-hexagon competition. As a consequence of the stabihexagons does not necessarily imply dodecagonal patterns,
ity of the square pattern in the PR feedback system, we aras the dodecagon branch might be completely unstable. One
ticipate square-hexagon competition instead. In the followinghas to keep in mind, of course, that an asymptotic bifurcation
we determine its onset. To describe the coexistence ddnalysis is qualitatively valid only until the next bifurcation
squares and hexagons, one must consider at least the inteccurs in the full nonlinear system. However, the model for
action of N=6 mode pairg§Fig. 4(c)], given by the Landau PR 2WM with intensity-dependent relaxation time has
dodecagon equatiorfd7,19, proven rather robust against secondary phase instabilities,
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e.g., and hence we expect the dodecagonal patterns to £ g.0(
present in this nonlinear optical-feedback system. (n=4)

V. NUMERICAL RESULTS

Analytical bifurcation theory, presented so far, predicts 4t
the threshold for the onset of pattern formation and the oc-
currence of an unstable annulus of spatial frequencies fronf
which nonlinear-mode interaction, in correspondence with=%
the amplitude-equation formalism, creates a definite patterr
possessing a finite number of spatial-mode amplitudes. 6

For almost a decade, extreme difficulties in the numerical
integration of the full set of nonlinear two-wave mixing, Eqgs.

(1) and(2), based on the reflection-grating type of interaction  ¢,® .
in a bulk photorefractive medium, have caused a lack of ’7/’,’1,',';'5}":,,"/,, momuuw‘
numerical results for patterns appearing in two transverse . ,‘:" 'o"o‘o.:":”‘:":"“‘:“.‘
dimensions. However, they are solely needed for comparisor e
of theory with experimental observations, and to corroborate
plenty of previously obtained analytical results. For mirror
distancesD>0 nonlinear bifurcation analysis quickly be-
comes extremely involvef36]. Similar difficulties may ap-
pear in the multiple-pattern region discovered in experiment g 6. Transverse intensity profile of bedmas it enters the

[31]. crystal atz=0 in the numerical grid of 128 128 points. The inten-
Numerical simulations are performed using a beam-s,ty is normalized to the intensity of the beam center.

propagation method that has been developed earlier in Refs.
27,38 to display transverse patterns in one dimengidp), . . .
E\nd tﬁat is gpp¥opriately mcF))dified to account for$2D.) Thetaken. The maximal §pat|al frequency that can be resolved is
difficulties in numerical treatment arise from the counter-Kmao/27~6.3, which corresponds to abouk. It turns
propagation of the beams under two-point boundary condi®Uut that at least R is required for the spectrum to suffi-
tions in a spatially extended system. A relaxation-type inte€iently saturate higher modes and to produce physically rea-
gration scheme of second order was found necessary, who§enable mode amplitudes.
convergence puts extensive requirements on the computer
memory and execution time. For a brief outline of this nu-
merical integration scheme see Appendix B. A. Spontaneous hexagon formation
In optics, contrary to most of the hydrodynamic and fer-  The proken inversion symmetry in the PR wave-mixing
romagnetic systems, e.g., the beam profiles are constraingflocess causes the hexagonal structure to be the preferred
to a finite lateral extent. A laser beam typically has a Gausspattern in the neighborhood of the primary threshold. Adia-
%atically approaching the instability threshold from below,
Mior the value of the coupling strength very closeltp, a
ﬂexagonal pattern spontaneously forms out of the initially
homogeneous beam profi(€ig. 7). At t=807pg a linearly
stable annulus of active modes becomes visible in the op-
t|cal far field, although only very faint as compared to the
pump beam. The nonlinear-mode interaction causes a
breakup of this annulus into a structure of six beanlike spots,
which eventually grow to form the hexagon, and the higher
harmonic modes/3K . and X appear. This confirms recent

l/,/ l, (o M ‘\\ \
'I/ :'/m..’«’o" o'omu n‘\\\ \\\\\\\
- ”l;/ i 'o' "o‘o'm‘»‘:‘: ,o""\ "‘\":\‘\ il

o
//””/I”ﬂ/%’i 'N

$\V*°

cause of that, in photorefractive wave mixing the spatlote
poral attractors obtained so far have not been shown t
possess domain boundaries or front dynamics. A higher,
aspect-ratio can be achieved if the beam is broadened, so t
a plateau forms. To accomplish higher-aspect-ratio condi:
tions for the simulations, we have chosen the incident enve
lope of the pumpA; to have the shape of a hyper-Gaussian
beam, while the incident envelope 8% is determined by
what is reflected back from the mirror,

AL(X,y,0,t)=A; exd — (x2+y2)"], (439  experimental observations of the temporal evolution towards
the hexagon sta{8]. In the near field, at the output faces of
Az(x,y,L,t)z—\/ﬁ(TF)’l{exp(i¢K)TF[A1(X,y,L,t)]}, the crystal, one immediately recognizes that the hexagonal

(43b) patterns occur with opposite phases, i.ez=a0 the inverted
hexagons with the total phas& = form, whereas at
wheren is the order of the hyper-Gaussian beam. Here we=L the positive hexagons wit’ =0 are visible. This an-
report the results for the case=4 (Fig. 6), all simulations tiphase behavior is a characteristic feature of PR patterns and
being done folD=0 andR=1 with the diffraction param- has been reported earlier for one-dimensional struc{@&s
eter f =0.034. This corresponds to an aspect ratio of aboutvhere it led to stripelike modulations at the opposite faces of
20. the crystal, which were spatially shifted with respect to each
A numerical grid of 12& 128 points in the transverse other because of the translational invariance. However, hexa-
plane and 300 points along the propagation direction igons possess an intensity profile with broken inversion sym-
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¥/ %o
K, wo/2m

¥/ %o

FIG. 7. Temporal evolution of transverse-
beam profiles, depicting the development of a
hexagonal structure out of the homogeneous state
forI'L=3.9,R=1, andD=0. Near-field pattern
of the amplified beanl,(z=0) (left column),
near-field pattern of the depleted be&pjz=L)
(middle column, and the spatial Fourier spec-
trum in the far field of the bearhy(z=L) (right
column are presented at different instances of
time. Upper to lower row: transient patterns at
t/ Tpr=80,240,360,440 and the attractortbtpr
=2000. The contour levels of the far-field pat-
terns have been chosen differently to clearly dis-
play the mode structure, and as a consequence the
brightness of the pump beam may vary.

¥/ W,
K, wo/2m

K, wo/2m

¥/ %o
K, wo/2m

¥/ %o
K, wo/2m
o

-1
-2
-3
-3-2-10 1 2 3
x/wW, x/w, K, wo/2n

metry, and the antiphase behavior immediately results in thelose to the stationary primary-instability point. It may affect
simultaneous appearance of the two different types of hexahe slow temporal evolution of transient patterns. However,
gons at the two output faces. as shown for the temporal evolution of transverse modula-
Before we discuss this phenomenon in more detail, let ugions in 1D[38,53, the transient dynamics indeed becomes
present the temporal evolution into the hexagonal patterrsjower by two orders of magnitude, but without affecting the
where this time a delta-peak-like perturbation of the refrac{rgnsverse shape of primary modulations. Traveling waves
tive index is applied in the middle of the crystal to excite thecaysed by the secondary instabilities were shown to possess
active modes more strongly. For the coupling strenigth  ,chy higher thresholds or may even be altogether impeded.

=3.9 we obtain the same transient behavior as in Fig. 71his should make the predicted square-hexagon competetion
however, for a value of'L=4.0 the transient is rather dif- more likely to be observable.

ferent(Fig. 8).

Despite the uniform perturbation K space, a squarelike
modulation emerges on the top of the annulus. Each of its
stripelike substructures gives rise to a hexagonal substruc- In the following we discuss the longitudinal propagation
ture. The two hexagons are rotated #©§2 and form a dode- of transverse modes through the PR medium. As mentioned
cagonal structure. Since the dodecagon is unstable in th&bove, an antiphase behavior of transverse patterns is
region of parameter spagef. Fig. 5b)], the two hexagonal present. It originates from the longitudinal propagation of the
substructures start competing with each other, leading to theattern within a bulk nonlinear medium. The eigenfunctions
formation and the long dynamics of penta-hepta defectsthat describe the longitudinal propagation of each transverse
Eventually, all defects reach the edge of the beam profile anthode have been calculated analytically from the linear spec-
disappear, and in the steady state again a regular hexagtivm of the corresponding eigenfunctions using the
forms. amplitude-equation formalism in Sec. IV B. We will focus on

The intensity dependence of has no influence on the the propagation of the two lowest-order modes: the critical
steady state, and does not change qualitatively our resultsodeK and the first higher-order mod@K . of a hexagon.

B. Longitudinal-mode propagation
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I, (z=0) s I, (z=L)

¥/ %o

¥/ %o
K, wo/2m

FIG. 8. Temporal evolution of transverse-
beam profiles depicting the development of a

o & hexagonal structure out of the homogeneous state
E 3 for T'L=4.0,R=1, andD =0. The notation is as
> N in Fig. 7, except that the transient patterns are

shown fort/7pr=300,500,700,1600 and the at-
tractor fort/ 7pg=5000. The development of de-
fect pairs is clearly visible.

¥/%o

¥/Wo

-3-2-10 1 2 3
K, wo/2n

The spatial modes from numerical data are localized irphase between the pump and the sideband béeansed by
the near field and have a broadened spot size in the opticéie eigenfunctionrotates with an increasing bifurcation pa-
far field. Therefore, their mode amplitudes are taken as theameterI'. To circumvent this problem we choosa,(z
amplitudes of the envelope of the wave packet. In perform=0QK_)|=1 for normalization, to extract the hexagon and
ing the analytical treatment we assumed the homogeneougripe amplitudes plotted in Fig. 10. This choice, however,
fixed-point solution to be infinitely extended in the trans- || yield coefficients that are quantitatively meaningless

verse direction, i.e., we restricted the analysis to an infinitelyyithout the explicit knowledge of the eigenfunction at the
high aspect ratio. As a consequence one should encountgice where the pattern is observed.

discrepancies that become more prominent as the aspect ralio 1o gevelopment of transverse structures through the
IlfnL%v;ﬁ;téﬂ):;n:e;:vgggiﬁﬁj hocceurt gggﬁgﬁ%égéhgrystal can be viewed in a more physical manner by looking
) yp t the light-intensity modulatiol , , [Figs. 9c) and 9f)].

profile approximates the assumption of an infinitely extende he intensity profiles have to be taken with caution though,

modulation from the analysis more closely, and the discrep- ) . .
ancies remain rather small. when used for displaying the development of a specific mode

Figure 9 compares the analytical eigenfunctions to thé:)gcause_ in calqulating intensities different §patia| mgdes
results obtained from the numerical simulations. All eigen-Tight mix. Starting from the unmodulated input profile,
functions have been normalized to ®$z=0K.) =1 for f[here are regions where the_modul_anon is positive, i.e., the
better comparison. As a consequence of the nature of tHBt€NSsity in the beam center is maximal and the correspond-
first-order phase transition and the fact that the stable soldnd pattern phase i =0. For the backward-propagating
tion only comes with very large amplitude, there are noticebeam there is a region where the modulation is negative and
able deviations in the propagation of the real and imaginaryhe pattern phase ¥ = . This is the origin of the antiphase
parts of eigenmodes from the analytical prediction for differ-behavior of patterns at the opposite output faces of the crys-
ent values of" on the hexagon branch. The best agreemental. The mode\/3K displays nodes at the propagation dis-
is found for I'L=3.32 at the lower hysteresis point. The tances where its amplitude vanishes. The combination of all
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FIG. 9. Longitudinal propaga-

(b) (e) tion of transverse modes. Analyti-
cal eigenfunctions(solid lineg
E E and numerical eigenfunctions for
E E I'L=3.32(dasheg andI'L=3.80
- - (dotted are presented(a) Real
5 5 and (b) imaginary parts, andc)
E E relative intensity modulation of
the hexagon modeK.. (d)—(f)
The same for the hexagon mode
V3K, . Each plot depicts both the
forward- and backward-
@ , , , . , (f) propagating beams indicated by
arrows.
o “w
i S
0.0 oiz oj4 o,la oja 1.0 00 02 04 06 08 1.0
z/L z/L

tranverse modes with their different mode amplitudes forms large pattern amplitude indicates that a strong renormaliza-
the series of intensity patterns, as in Fig. 11. Two lateral cutsion for the asymptotic expansion is present.

through the intensity profile,(z=0) of Fig. 11(d) across the

x andy direction, respectively, reveal a large spatial modu- C. Subcritical hexagons and strong renormalization

lation of the amplitude, as a consequence of the first-order ) . ) L
phase transition. Locally the intensity rises almost three From the discussion in the previous section it is clear that

times above the homogeneous backgroifid. 12a@)]. Such the absolute value of the order parametér given by the
amplitude equation, loses its physical meaning without the

0.8 ' ' explicit knowledge of the longitudinal eigenfunctidmz) in
_ oel the bulk medium. Moreover, the critical-mode amplitusie
’r-fli and the pattern amplitudemust clearly be distinguished, as
S04 they certainly coincide only very close to the threshold. The
5:‘ pattern amplitude is a superposition of the order parameters
- o2r multiplied by the eigenfunctions at the propagation position
0.0 where the pattern is observed. However, the mode ampli-
3.0 tudes obtained from the analysis can still give rather accurate

results even far away from the threshold, depending on how

] _strong the renormalization of the longitudinal behavior is and
FIG. 10. Amplitude of the modulated structure for one spot pair, ow many higher orders have to be taken into account

of the critical modeK; as a function of the coupling strength in the The first-order phase transition of hexagons is accompa-

case of inverted hexagonki ) and stripes §). Solid (dashedlline . . . . .
denotes the stabl@unstableé branches obtained by the amplitude nied by a large pattern amplitude near the bifurcation point,

equations for the self-organized structures. The normalization factdi€nce a strong renormalization of the eigenfuncti¢nK.)
is = u{P~0.0476. Results from the numerical simulations of self- iS anticipated. In the following we determine the strength of

organized hexagons and of the Fourier-controlled stripes are repréhe renormalization according to our multiple-scale expan-
sented by bullets. The dotted lines are a guide for the eye. sion. Assuming that the hexagon has the form as in Fig.
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(a) 2=0 z=L/2 (C) z=L
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FIG. 11. Transverse patterns of the light field of the forward-
propagating bearh, (8)—(c) and of the backward-propagating beam

I, (d)—(f) at different positions within the crystat=0 (a) and(d),

z=L/2 (b) and(e) andz=L (c) and(f). 'L =3.8 slightly below the

bifurcation point.

11(d), the amplitudes equalW"| and the phases obey
1= = 3=y"=m. Combining the expansion ansatz
(1409 with Egs.(31) and(22), the amplitude of the hexagon

at the beam center is given by
a2 (0,02)=3[r§)(2)| W"|cog )
+2r(2)|WH|? cog 24)]
+ (higher-order terms

:3[r<31)(z)

29y
+ ?rgz)(z)

|WH|cog ¢)

r-r

+6G

“rP(2)
+ (higher-order terms

~3r§°%(z)|WH|cog ¢M),

(44)

(49)

(46)
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-4 -2 0 2 4
¥/ W

FIG. 12. Cuts through the transverse-intensity profiles of the
beaml,(z=0), as in Fig. 11d). (a) Cut alongy=0 and (b) cut
alongx=0 in the direction of on& vector. Intensities are normal-
ized to the input beam intensity(x,y,z=0).

with the critical ratio 7,=2(—1)"g,/G°, andS{? is the
inhomogeneous part of E¢B4) in the untransformed basis.

If a strong renormalization factor is found®+1, it leads

to discrepancies between the critical-mode amplitude and the
order-parameter. This phenomenon is related to the subcriti-
cality dilemma, arising in the asymptotic expansion to obtain
Landau equations for a first-order phase transition, where
subsequent orders become comparable.gnid of the order

of one. However, for order-parameter equations like (B)

or Egs.(38) and (39) to be still a valid approximation, the
normalization must be unique for all planforms, simulta-
neously. Consequently, we have choges ) such that

the eigenfunctions for the rhombi are normalized, aui@

now becomes a scaling factor due to the renormalization of
the hexagons. As mentioned above, for hexagons it is neces-
sary to normalize the moduli of amplitudes, because the
phase of the eigenfunction rotates with increasing bifurcation
parameter. Therefore, the hexagon-mode amplitude in Fig.
10 is related to the order parameter from Figo)Sy

M(l)

1
lagk (z=0)|=— —5|W4l, (48)
¢ )

wherer3(z,K,) is the third component of the eigenfunction where u,, denotes the normalization for the moduli. This
in the untransformed basis, and where the term proportiongields a scaling factor due to renormalization;oﬁf)~0.4,

to (I'=T';)/G is negligible up to this order. Renormalization and a strong renormalization indeed occurs.

of the total eigenfunction according to REY(z=0)=1
will modify the normalization factor. It can be expressed asbelow Eq.(36)] could be chosen arbitrarily, e.g., according to
the product of the normalization factors at each order. In ouan orthogonality condition, because theft) andg.,; would
casen=uMu®, where the factor at second order reads ase nearly independent gf. This, however, is not the case

o_ 1t neput
W= o)
1- 7. ReS;7(0)

(47)

If the renormalization was weak, the free parametécf.

here andg..;; strongly depends on the choice pf We de-
cided to determine its value by a fit of the analytical curve to
our numerical results in such a way that the ratigggfand
0.3 Yields the same hysteresis, taking into account that be-
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I, (z=0)

PR

0 L L+D

FIG. 13. Geometry of the feedback loop supplied with the filter
maskfg placed in the Fourier plane.

cause of the low aspect ratio of patterns, the amplitudes from
numerics always lie somewhat below the analytical values. (C) (d)
In this mannep =7.30 and we obtaig ;= 35.38. This pro-
cedure is, of course, unsatisfactory from a theoretical point
of view. The question of how to determipein an analyti-
cally consistent way may only be answered if the multiple-
scale expansion is carried out to higher orders.

VI. FOURIER SELECTION -3-2-10 1 2 3 -3-2-10 1 2 3
K, wo/2m K, wo/2m

Both our analytical calculations and numerical simula-
tions have shown that close to the primary threshold, the FiG. 14. Stripe pattern foF L=4.1 when the slit filter mask is
hexagonal pattern is the only stable structure wden0 and  present in the feedback loofs) Near-field pattern of the depleted
R=1. But it also has become clear that a majority of pat-and (b) of the amplified beam(c) and (d) are the corresponding
terns, in fact any regular array of\2spots out of the annulus far-field patterns.
of active modes, exists as an unstable stationary solution. It
is now desirable to have an access to these structures asduares, the lowest-order interaction modés=2K_,
manipulate the system to select and stabilize the unstabkmong other higher-order modes, are blocked by the choice
stateqd 39]. Such an approach provides us, on one hand, witlof the filter mask. However, this does not mean that the
access to the whole set of possible pattern states, and on thgher harmonic modes remain zero throughout the crystal.
other hand, with a broader insight into the underlying mechafFrom Figs. 17d) and 17e) it is seen that the nonlinear bulk
nisms in the process of pattern formation in a bulk PR meimedium tends to recover the form of the longitudinal-
dium. propagation mode. The propagation of the critical méde

Motivated by the Fourier-filtering technique that has beerof the square pattern is not affected by the lack of the inter-
used in experiments so f§#9], we use the same filtering action modes. Nevertheless, higher harmonic modes are es-
technique and study its impact on this pattern-forming sys-
tem. A Fourier-filter maskfg(K,,K,) is inserted into the (a) (b)
feedback pathFig. 13 to manipulate the mirror boundary 1, (z=L)
conditions for certain spatial modes, which we want to sup-
press. It is important to note that the pump beam must not be
disturbed in any way. Black areas in the filter mask absorb all
spatial components, and thus are equivalent to a zero bound-
ary condition for the modeK such thata,(z=L)=0. Un-
doubtedly, the method is strongly invasive, as it alters the
boundary conditions and hereby switches some of the active
modes to passive ones. So, one may expect not to be able to
stabilize unstable eigenstates of the filterless system in this
way.

Figures 14 and 15 display the stripe and square patterns
that are successfully selected by applying the corresponding
Fourier masks presented in Figs.(d6and 1&b). In the near
field both patterns again show the typical antiphase behavior
characteristic of PR pattern formation. Despite the invasive
filtering, the stripe pattern completely coincides with the un-
stable stripe solution of the filterless system. Both its ampli-

. . o ) i -3-2-10 1 2 3 -3-2-10 1 2 3
tude from Fig. 10 and its longitudinal eigenfunctipfigs. K, wo/2m K, wo/2m
17(a) and 17b)] are in good agreement with the analytical
curves calculated for the originally unstable stripe state. FIG. 15. Square pattern fdtL =4.1 when the cross-filter mask

When the Fourier filtering is applied to the case ofis present in the feedback loop. Notation is the same as in Fig. 14.
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(a) (b) If the stripe solution was selected in either of the two
perpendicular directions of the cross filter, it would be a

3 3
2 2 strong indication for the effect of stripe-hexagon competition
& 1 & 1 rather than square-hexagon competition. But obviously, that
3 o0 2 o is not the case.
-1 o =1
-2 -2
-3 -3 VII. CONCLUSIONS
3 _zgxlwoo/zlﬂ 23 -3 _2§x1v2/21ﬂ 23 The present paper, for the first time to our knowledge

since the initial experimental observations, presents numeri-
FIG. 16. Spatial Fourier-filter maskg(K,,K,). (&) Slit and(b) cal simulations of two-dimensional patterns in a bulk photo-
cross filter. refractive crystal with a single feedback mirror. Thus far en-
ergy transfer between two beams and the interaction via
sential constituents of the desired pattern and should not beflection gratings in a spatially extended system have pre-
suppressed by the filter, thus a more careful choice of maskduded simulations of the full set of nonlinear wave-mixing
is required as it is noted in Ref39]. equations. With our relaxation-type integration scheme we
Even though we are using an invasive filtering techniqueare able to study the spontaneous formation of two-
an important feature of the self-organization process can bdimensional structures in the transverse-beam profiles, their
inferred from it. When the stripes have been selected antbngitudinal development within the nonlinear optical crys-
they reach steady state, replacing the slit filter by the crostal, and the effects of Fourier filtering on the mode-selection
filter will make the squares appear. The fact that the squargsrocess.
can be selected in this way at all is a direct consequence of In the self-organization process hexagons are identified as
the stability of the square pattern. Within the subsystem dethe predominant patterns above the primary instability
fined by the filter, the squares are stable with respect to th#hreshold. The longitudinal variation of the wave-mixing
stripes [cf. Fig. 5a)]. Furthermore, the invasive filtering process, through the change in the refractive index, causes
method provides an important indication for the squarethe breaking of the inversion symmetry. Out of the homoge-
hexagon competition in the PR feedback system in the paaeous beam profile the faint annulus of transverse modes
rameter region considered. develops in the first stage. For weak initial perturbations

K=V K, (Sq)

K=K, (8,5q) 3

FIG. 17. Longitudinal propa-
gation of transverse modes in the
geometry with filter. Analytical
eigenfunctions (solid lines and
numerical eigenfunctions with
I'L=4.0 for stripes(dashed and
squaregdotted are displayed(a)
Real and(b) imaginary parts and
(c) relative intensity modulation
of critical modeK,. (d)—(f) The
Y ’ ’ ' ' T ’ ' same for the square mod@K_.

Each plot depicts the forward- and
4 ¥ ¥ ¥ y backward-propagating beams in-
dicated by arrows.

8,/15°

81,/1,° ,

0.0 0.2 0.4 0.6 08 1.0
z/L
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hexagons then immediately arise through the breakup of thitheoretical proof, whether a static manipulation method is
unstable annulus. They appear through a subcritical bifurcasapable of stabilizing unstable eigenpatterns in the feedback
tion with a prominent hysteresis and a large amplitude. In théystem within a nonlinear bulk photorefractive medium.

PR pattern formation an antiphase behavior is observed,

which results in the simultaneous appearance of the positive APPENDIX A: VECTORS AND MATRICES

and inverted hexagons at the opposite output faces of the OF NONLINEAR INTERACTION

crystal. Penta-hepta defects may cause a long transient dy-

namics, but eventually they disappear at the edges of thg,y nonlinear-mode interaction involved in the multiple-

beam profiles. . . . .
. ; . .. scale anlysis to obtain the amplitude equations for pattern
The linear instability threshold and the angle of the side- y P d P

) - formation in PR wave mixing. The general form of the wave-
band_ beams turn out to be very FOb“St against the re.dUCt'ol%ixing equationg13), listed here again for completeness,
of mirror reflectivity. Whether stationary or oscillatory insta-
bllltles_occ_ur depends strongly on tr_\e mode_l for the photo- Ez;x,yU+M0ﬁ:Ml(ﬁ|G)! (Ala)
refractive time constant. The typical inverse intensity depen-
dence of the relaxation time leads to the correct prediction of
stationary patterns for real mirror distances, in accordance
with the experiments. — N (GG + A5(GLG1G) + - - - Alb

The stability and coexistence of planforms has been de- (V1Y) 2UIUIV) ' (A1D)
termined by a multiple-scale analysis, leading to the couplegresents the starting point of our expansion procedure, where
Landau equations for ary-modal structures. The cubic self- we follow an idea by Geddest al. [11]. The idea is con-
and cross-coupling coefficients for a mirror with high reflec-ceived for wave mixing in Kerr media, and needs to be
tivity placed at the exit face of the crystal have been calcumodified to be applicable to the grating dynamics occuring in
lated, carefully incorporating and discussing the normalizapr wave mixing with slow medium response. Equations
tion of longitudinal eigenfunctions for a quantitative (A1) are obtained from Eqg12) by a basis transformation
comparison with our numerical results, including eigenfuncfrom the complex vectors of deviations to a reah2)-

In the following we present the details of the field-grating

[ Doyt Dyy(U)+ Dyy(G[0) + - - 1P~ AU

tions of higher-order modes. dimensional vector space,
For an array of six spot pairs the nonlinear bifurcation
analysis predicts the occurrence of square-hexagon competi- U, 1 1 -1 -1\ /a
tion rather than the stripe-hexagon competition and, more- U i i i a*
over, a parameter region where a stable dodecagonal pattern 2| _ ! (A2a)
should be observable in the PR feedback system. Because of Us 1 1 1 1]|a]
the extreme computational requirements this could not yet be U, —i i i i a}
confirmed by our numerical-integration procedure.
Along with the first-order phase transition, a strong renor- P, 1 1\/q
malization factor has been determined for the hexagonal- ( )z( o )( *) (A2b)
mode interaction. Hence the hexagon amplitude considerably P, BLENAL

dewatgs from_the order parameter obtained by the I.‘f"md.aﬂ/e prefer thd4+2)-dimensional to the six-dimensional vec-
equations. This phenomenon is related to the subcriticalit

dilemma here, for example, occurring for the hexagonal}{Or space used by Lushnikq86], because the grating vari-

mode interaction, which arises in the asymptotic expansion i?bles can be eliminated at each order of the expansion, and
' ymp P one is left with a four-dimensional problem, instead.

subsequent orders become comparable. Regardless of the or- ions(A1 Lin th hat thev d ib
der (cubic or higher of the expansion, one must always en- quat|o_ns( ) are genera m_t e sense that they describe
' the behavior of wave mixing independent of whether the

iggeugl];t normalization is unique for all planforms Slmulta'interactions of field and grating variables originate from two-
An invasive Fourier-filtering method has been used to sed’ four-wave mixing, and they apply to both the stationary

lect stripes and squares that are otherwise unstable solutionasr.1d oscillatory instabilities.

For wave mixing in a bulk medium the filter mask changes The notations (|U) and U|U|U) denote the products of
the boundary conditions for certain modes and tends to SUFg_lfferent quadratic and cubic nonlinearities. In the case of PR
press them. However, the finite medium partly recovers thdo-wave mixing discussed in the text, the general interac-
propagation of these modes and the squares could be sJéQn matrices and vectors are given for the casel. The
cessfully selected by a cross-shaped filter. Yet, the invasivéPatial- and temporal-derivative operators are

Fourier filtering may provide deeper insight into the pattern- 0T —fv2 o 0

formation processes of the filterless system, as an indicator z L

of square-hexagon competition, e.g. Although the stripe pat- fo d, 0 0

tern obtained with a filter completely coincides with the un- Loxy= 0 0 J _fv2 | (A3)
stable stripe state without filter calculated from the nonlinear z L

analysis, one should not yet speak of pattern control in this 0 0 fo d,— T

context, in the sense that unstable eigensolutions have been

stabilized. It remains to be seen by means of a more rigorous Dos= 7(19)9,+1, (A4)
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K
Dl,t: ) 7(l O)U3(9t ) (A5)

K
Dyy=— l—6¢(|°)[u§+ U3—3U3%+U5-2(k—1)U3]4;,
(A6)
where the matrice®; ; have been reduced to scalar opera

tors because(1°) is real valued. The linear coupling matri-
ces read as

00
00
Mo=T| | I (A7)
01
000 0
NO:(O 00 1) (A8)

and the nonlinear field-field and field-grating coupling results

in the vectors

P, P, O 0\ /U,
/\_}l r P2 _Pl O O U2 Ag
“4lo0 0o -P, -P, u3’()
0 0 -P, P/ lu,
. 1/ U2+U3
1=—7 : (A10)
4\ U U,+UsU,
! 2U4(UT+U))
2716\ 2U,U,Us— Uy(U2+U3-U2+U2) )
(A11)

One recognizes that up to third order none of the nonlin
ear temporal derivatives contributes to the dynamics of th
Landau equation. The nonlinear self-coupling coeffictgnt
given in Eq.(27), depends on the longitudinal eigenfunctions
of the first and second order through

M= 2M3(pi)| Ui o) + 2M3 (P ol ui)) + ME(P|UEL)

+ MS(PR [ud), (A12)

N = 2N, (UL o) + 273 (Ul o|uld?) + Ny (U] ugR)

+ N1 (U JU) + 3NG(a [ ud); (A13)

the rhombic cross-coupling coefficiers,, in Eq. (28),
through

PHYSICAL REVIEW A 64 063809

my=2 M5 (U o) + 2M(pI o ) + 2 M5 (P U?)
+2M5(p[U) + 2 ME(p | a))
+2M5(pu), (A14)

ng=2N1(UUZ ) + 2N (U)oU) + 203 (U] ud))

+ 2N (U@ ud) + 24 (u[u@) + 245 (U@ [ud)
+6NL(uP|uug), (A15)

and the cubic hexagonal cross-coupling coefficigpt, in
Eq. (36), through

ﬁ/g ZM p(1)|u(2) )+2./\;l (p(Z) G&lc))

+2M5(pI|u) +2M5(p|ug)
+2M (p(1)|u(\23)K )+ 2M5(pBy |u§<10)),
(A16)

N ag= 2N (U U ) + 207 (U o D) + 203 (U] a)

(2)

+ ZNl(u(2)|u(l)) + 2/\f1(u(1)|u\3K

+ 2Ny (UG U +6NL(u udud), (AL7)

where the eigenfunctions of the grating in the second order
are related to the field eigenfunctions bp{(z)
ZNOG(KZ)(Z)+K/1[U(K1C)(z)|uf<lc)(z)] for modesK.

The superscript denotes thaMl has to be taken with
I'=T. coming from the expansion ia, which in this case
readsM;=MS+eMP+ ...

e
APPENDIX B: RELAXATION-TYPE
BEAM-PROPAGATION METHOD

We briefly outline the numerical-integration scheme to
solve the coupled nonlinear partial differential equati@hs
and (2) under two-point boundary condition&gs. (43)] in
the case of a photorefractive nonlinearity including strong
pump depletion. For the spatial problem in two transverse
dimensions we apply a simple spectral meths8]. We con-
sider one of the two propagation equations for the light
fields, e.g., Eq(1a),

(9, 1TK?)A(2)=—QAy(2),
which has already been transformed into the Fourier space,
where K2=K2+K2. The tilde denotes the spatial Fourier

transform achieved by use of a fast-Fourier-transform algo-

(B1)
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rithm. In Eq.(B1), only the dependence on the propagationmerical difficulty, a second-order iteration procedure is nec-
variablez is retained. The initial partial differential equation essary. It has the form of an artificial damping added to the
is thus transformed into a system of ordinary differentialfield equations,

equations, with as many equations as there are Fourier com-

ponents. In the case of a 12828 Cartesian grid in the - ~ ~ -

transverse dimensions, the root-finding procedure of a Af(z+62)=A{""(z+52)— 5[Al(2)-AT }(2)].

shooting-type integration scheme is inappropriate to solve (B3)
this spatially extended two-point boundary problem, and we N
are left with a relaxation-type integration scheme. Herem counts the number of iterations, amg”zo) is equal

Equation(B1) cannot be solved exactly, because of theto the rhs of Eq(B2) at an iteration stepn. The artificial
convolutionQA,, which contains the second beam and thedamping constant possesses an optimal value, for which
grating variable. However, for an infinitesimal propagationthe least iterations are needed. In our simulatigrs0.004.
distancesdz, we assume that the convolution term does not The relaxation method must, of course, be supplemented
change appreciably, and we are faced with inhomogeneousith a convergence criterion. We find that the spatial distri-
differential equations, which we formally integrate to yield bution of the light fields is sufficiently approximated, if the

transverse-beam profiles at the output faces of the crystal
obey the following condition:
Ay(z+ 82)=A(z)exp(ifK25z)
 eifk?s9-1 | 1A7oo - Aoy laxdy<e [ ATy laxay
+iQA,(2) iz (B2) (B4)
Accurate results are obtained for= 10" 6. This integral con-
The inverse Fourier transform then determines the field amvergence criterion has been checked by a local criterion
plitude A, (z+ 5z) advanced for &z step. In this manner the Where necessary. As soon as the beam profiles have con-
first beam is propagated through the nonlinear medium. In aMerged, the artificial damping term in E@®3) becomes neg-
analogous way the second beam, subject to the mirrdigible, ensuring that we have found a solution of E(S.
boundary condition, will be propagated in the backward di- Once convergence of the beams is achieved, we solve Eq.
rection. The grating variabl€ does not change during the (2) by advancing the grating amplitude, similar to the field
propagation of the light fields. This is justified by the as-propagation, for an infinitesimal time stejp according to
sumption in our model that the temporal evolution of the
grating is much slower than the time needed by the beams to ~ Q(t 90 =Q(t)exp(— )

traverse the crystal. However, because of the mirror bound- *
o N A A
ary condition, we are also forced to keep the spatial distribu- +———[1—exp —8t/7)].
tion of one of the beams fixed during the propagation of the |A1|2+ |A2|2+Id
other beam. As a consequence, we must iterate the propaga- (B5)
tion of the beams, alternatingly, until it converges to the so-
lution for a given spatial grating distribution. Although one can think of more sophisticated algorithms for

Unfortunately, the integration scheme outlined so far failsthe infinitesimal integrations alorggandt, they are the least
in converging when strong pump depletion is present, andime consuming, and by appropriate choicesdafand &t
the relaxation method eventually loses track of the solutiorphysically reasonable results are obtained. In our computa-
during propagation along. In order to overcome this nu- tions both step sizes are always less than 0.05.
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