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Self-organization and Fourier selection of optical patterns in a nonlinear photorefractive
feedback system

O. Sandfuchs and F. Kaiser
Institute of Applied Physics, Darmstadt University of Technology, Hochschulstrasse 4a, 64289 Darmstadt, Germany

M. R. Belić
Institute of Physics, P.O. Box 57, 11001 Belgrade, Yugoslavia

~Received 22 June 2001; published 15 November 2001!

The formation of patterns in two transverse dimensions in photorefractive two-wave mixing with a single
feedback mirror is investigated theoretically. We perform numerical simulations of the full~311!-dimensional
nonlinear model equations, displaying the breakup of the unstable annulus of active modes into hexagonal
spots. Analytically we derive amplitude equations of the Landau type for patterns with rhombic- and
hexagonal-mode interaction and discuss the stability and coexistence of transverse planforms in the photore-
fractive feedback system. A strong renormalization for the hexagon amplitude is determined, and its conse-
quences for pattern formation using Landau formalism are discussed. In particular, the stability of regular
substructures of a dodecagonal spot arrangement is investigated and square-hexagon competition is predicted.
We use an invasive Fourier-filtering technique for the selection of unstable patterns, such as stripes and
squares. The longitudinal propagation of the critical and higher-order modes of the self-organized structures
and the impact of a Fourier filter on the mode propagation within a nonlinear bulk photorefractive medium is
studied in detail.

DOI: 10.1103/PhysRevA.64.063809 PACS number~s!: 42.65.Sf, 42.70.Nq, 42.40.Pa
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I. INTRODUCTION

Spontaneous pattern formation is the topic of intens
research in many fields of science concerned with dissipa
structures in nonequilibrium systems. Much effort has be
addressed to a universal understanding of the formatio
complex spatiotemporal patterns@1–3#. In the vicinity of a
bifurcation point, the concept of order-parameter equati
of synergetics@4# has been widely applied and proven a us
ful tool in analyzing the mode-selection mechanisms and
stability of patterns in various physical systems, such as
face waves @5#, ferromagnetic systems@6,7#, reaction-
diffusion systems@8,9#, Bénard-Marangoni convection@10#,
and nonlinear optical systems@11–14#. Despite its universa
character, the question of pattern selection and compet
for a specific system still remains one of the interesting a
demanding problems.

Symmetries and the type of bifurcation determine
form of the order-parameter equations. The coefficients
flect the specific characteristics of the underlying system
play an important role for the pattern-selection process.
riodic planar patterns, such as stripes, rhombi, squares,
hexagons possess a translational symmetry. Among t
regular structures the hexagonal patterns have played an
standing role, not merely because of the beauty of their
rangement but also because of their specific properties,
as the broken inversion symmetry and the resonant inte
tion between fundamental modes, which makes them
dominant patterns in systems that physically support
breaking of inversion symmetry.

The natural coexistence of stripes and hexagons
widely been discussed in terms of Landau hexagon eq
tions, see, e.g., Ref.@15#. The possible coexistence of squar
and hexagons is more involved and has attracted cons
1050-2947/2001/64~6!/063809~20!/$20.00 64 0638
e
e
n
of

s
-
e
r-

n
d

e
e-
d

e-
nd
se
ut-
r-
ch
c-
e
e

as
a-

er-

able attention recently. Theoretical studies of the competit
of these two types of patterns, which belong to differe
symmetry classes@16# and cannot simultaneously exist on
spatially periodic lattice, may lead to spatially aperiodic p
terns ~quasipatterns! of 12-fold symmetry, such as dodeca
gons@17–19#. Their existence has been confirmed in a va
ety of experimental observations in different pattern-formi
systems within recent years@20–22#.

Ever since the initial experimental observations of he
agonal patterns@23–25# due to counterpropagation of tw
optical beams in photorefractive~PR! crystals, pattern for-
mation through PR two-wave mixing has become a grow
field of nonlinear optics@26–28#. In particular, the formation
of patterns in a PR crystal with an external feedback mir
has been the topic of a number of recent articles. Structu
such as stripes and squares have been identified@26,29#, and
very recently experiments on the competition of dynami
patterns@29,30#, multistability @31#, and the appearance o
dodecagons have been reported@32#. PR crystals hold prom-
ise for parallel optical data and image processing, hence
interest in transverse spatiotemporal structures in such
dia.

Experiments have been accompanied by theoretical an
ses of transverse modulational instabilities@33–35#. How-
ever, there are only a few theoretical investigations beyo
linear instability that analyze and explain the appearance
the variety of patterns. In a paper by Lushnikov@36# the
stabilization of the hexagonal-mode structure is explain
using an amplitude-equation formalism. Three coupled L
dau equations were derived describing the coexistence
stripes and hexagons. It was stated that the correspon
coefficients are valid more qualitatively than quantitative
due to a substantial renormalization. Saturation of explos
instabilities, for which higher-order wave processes are n
©2001 The American Physical Society09-1
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essary, was obtained by a numerical experiment taking
account a larger number of sum and difference harmonic
the series expansion.

The cooperative effect of diffraction and nonlinear bea
coupling leads to the formation of transverse patterns. Ow
to diffraction of optical beams, patterns arise in a plane p
pendicular to the propagation direction. The optical bea
become spontaneously unstable against transverse mo
tions that grow due to an absolute instability out of the i
tially smooth beam and grating profiles. The two-wave m
ing between forward and backward propagating opti
beams induces a refractive-index grating, which in tu
couples the beams by Bragg diffraction@37#. Bragg diffrac-
tion is present because of the finite longitudinal extent of
crystal, i.e., a volume-index grating is formed whose grat
period is much shorter than the medium length. The coun
propagation of optical beams and the choice of crystal or
tation favors the formation of reflection gratings. The co
pling between beams leads to an exchange of energy an
pump beam is depleted. This pump depletion is not ne
gible when dealing with pattern formation in a PR syste
with optical feedback. It is the origin of tremendous difficu
ties in the theoretical treatment, both analytical and num
cal.

Another important feature of PR wave mixing that is us
ally neglected, because of the difficulties in analytical a
numerical treatment, regards the temporal evolution of
refractive-index grating, which is dependent on the total lig
intensity. The nonuniform distribution of the total light inten
sity, due to pump depletion along the propagation direct
and spatiotemporal modulation in the transverse plane,
sults in a photorefractive time constant that varies whit
the crystal. The PR medium reacts faster in more illumina
regions and the buildup of refractive-index changes proce
at different paces. The transient dynamics of on
dimensional spatiotemporal patterns has been shown to
down by a few orders of magnitude compared to the mo
with constant relaxation time@38#, however the coexistenc
of stationary patterns and the Fourier selection is not
fected. Therefore, we will present numerical simulations
the model with the constant-relaxation-time approximatio

In recent years research activities have focused on
manipulation and control of patterns in spatially extend
continuous systems@39–44#. Triggered by methods of chao
control @45,46#, which have been successfully applied to s
bilize unstable orbits in purely temporal dynamics, it is d
sirable to establish analogous methods for stabilization
unstable states in spatiotemporal systems. The amplit
equation formalism, where applicable, provides an analyt
method to obtain the unstable pattern states, so that the
terns can be directly compared when selection and stabi
tion methods are applied. Such methods would exert an
pact on technological applications in, for examp
information processing, for which optical devices ha
promising perspectives.

Although manipulation of spatial structures in the Four
domain is now one of the most important concepts in mod
nonlinear optics, a rigorous theoretical proof of its power
stabilize unstable eigensolutions is still missing. This is p
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ticularly true for wave mixing with a PR nonlinearity, wher
the patterning process takes place in a medium of finite l
gitudinal extent. Here the Fourier filter acts as a strong
weak disturbance of the mirror boundary conditions in t
case of invasive or noninvasive control methods, resp
tively. We will not give this proof here but instead discu
some advantages and problems that the Fourier-filte
technique, which has been used so far in experiments w
the PR feedback system@40,47–49#, poses from a theoretica
point of view.

Our investigation proceeds along two tracks, analyti
and numerical. After introducing the model of the PR fee
back system~Sec. II!, we perform a linear stability and a
nonlinear amplitude analysis, and discuss the threshold
havior and the stability ofN-modal transverse patterns b
means of a Landau description, thereby neglecting slow s
tial variations~Secs. III and IV!. Numerically, we discuss the
self-organization of PR hexagons~Sec. V! and the effects of
Fourier filtering on regular patterns in a bulk PR mediu
~Sec. VI!. Section VII brings conclusions.

II. WAVE-MIXING EQUATIONS

The model for the PR wave mixing through the formati
of a reflection grating originates from the charge-transp
model of Kukhtarev et al. @50#. Rigorous solution of
Kukhtarev’s nonlinear material equations is computationa
expensive@51#, particularly in the context of transverse
pattern formation in the PR feedback system. Hence the n
for an approximation of the grating response, which is
simple as possible, but good enough to account for the in
esting phenomena observed in pattern formation. Suc
model of wave mixing is introduced below.

The setup for observation of transverse patterns in
two-wave mixing~2WM! with a single feedback mirror is
presented in Fig. 1. The wave-mixing process is described
the slowly varying envelope paraxial equations for the t
beams@38# in two transverse dimensions

]zA11 i f ¹'
2 A152QA2 , ~1a!

2]zA21 i f ¹'
2 A25Q* A1 , ~1b!

wherez is the propagation coordinate scaled by the crys
length L, and ¹'

2 is the transverse Laplacian scaled by t

FIG. 1. Two-wave mixing configuration in the reflection geom
etry with a feedback mirror M.A1 is the pump andA2 is the re-
flected beam,Q is the grating amplitude,z indicates the direction of
propagation, andx is one of the two transverse dimensions.L is the
crystal length andD is the distance to the feedback mirror.
9-2
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SELF-ORGANIZATION AND FOURIER SELECTION OF . . . PHYSICAL REVIEW A 64 063809
beam waistw0. The parameterf 5L/(2k0w0
2) represents a

measure of the magnitude of diffraction and is proportio
to the inverse of the Fresnel number. Herek0 denotes the
wave number in the longitudinal direction within the cryst
Absorption losses have been neglected.Q is the complex
amplitude of the reflection grating, whose temporal evolut
is described by a relaxation equation of the form

t~ I !] tQ1Q5G
A1A2*

uA1u21uA2u21I d

, ~2!

whereG is the wave coupling constant. In PR wave mixin
charge-transport processes yield an, in general, inten
dependent relaxation timet(I )5(I p /I )ktPR , with the total
intensityI 5uA1u21uA2u21I d . The exponentk describes the
characteristic behavior of nonlinear charge-diffusion p
cesses present in PR materials. In the standard Kukht
model, assuming linear medium response, the time cons
is calculated to be inversely proportional (k51) to the total
intensity. Nonlinear material response and nonlinear cha
diffusion processes lead to values ofk5” 1. In particular, nu-
merical investigation of Kukhtarev’s band-transport mod
yielded a sublinear dependence@51# with k'0.7, which is
characteristic of slowed diffusion processes.

The dark intensityI d , due to thermal background illumi
nation, is considered small (I d;1025I p) as compared to the
intensity of the input pump beam,I p5uA1(x,y,z50)u2.
SincetPR is a constant that depends only on material pr
erties, it defines a natural scaling of time.

The assumption in Eqs.~1! and~2! is that the dynamics o
envelopes is slaved to the grating amplitude because o
slow evolution, and that the spatial distribution ofQ is de-
termined by the spatial distribution of the beam envelop
with the Debye-screening length much shorter than
wavelength of a transverse pattern. Although this model m
look extremely simple, it still requires much computation
effort. Since the first experimental evidence of hexago
patterns in 1993@23#, to our knowledge we believe ourselve
to be the first ones to present numerical simulations of tra
verse patterns in 311 dimensions.
s
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III. LINEAR STABILITY ANALYSIS

Linear stability of two counterpropagating optical beam
with a PR nonlinearity has been discussed in a variety
previous works @33–35#. Analytical threshold conditions
were obtained under certain constraints. Mirror reflectivit
lower than unity and the effect of intensity dependence of
PR relaxation time immediately result in a nonautonomo
stability problem, and analytical expressions no longer ex
In the following we present a semianalytical approach to fi
the primary threshold for the onset of two-dimensional tra
verse patterns in the feedback system without imposing s
constraints. Thus we are able to discuss important effe
concerning different mirror reflectivities and intensit
dependent PR relaxation time.

The primary threshold is determined by the linear ins
bility of the steady-state plane-wave field amplitudes, d
noted byA1

0(z) andA2
0(z), and the corresponding amplitud

of the refractive-index gratingQ0(z). The linear eigenspace
constitutes the base for the subsequent nonlinear bifurca
analysis. Therefore we consider the time and space evolu
of the perturbationsa1,2 andq from the homogeneous fixed
point amplitudes,

A1;2~x,y,z,t !5A1;2
0 ~z!@11a1;2~x,y,z,t !#, ~3a!

Q~x,y,z,t !5Q0~z!@11q~x,y,z,t !#. ~3b!

After substituting Eqs.~3! into Eqs.~1! and~2! the perturba-
tions are expanded in the transverse Fourier and in the t
poral Laplace space (t→l), whereq can be eliminated, and
the linearized propagation of perturbations is cast into a m
trix form

]za5A~z,K2,l!a~z,K2,l!, ~4!

whereK2 is the square of the transverse wave vector. T
vector a5(a1 ,a1* ,a2 ,a2* )T then contains the Fourier
Laplace components of the perturbations. Choosing an
propriate basis via a transformationU ~see Appendix A!, the
physics involved in the linear stability analysis for PR wa
mixing becomes more obvious. The stability matrix reads
A5U 21S m0
2G1~12m0

2!g~l! 2 f K2 0 0

f K2 0 0 2A12m0
2g~l!

2A12m0
2g~l! 0 0 2 f K2

0 0 f K2 g~l!

D U. ~5!
Note that the steady-state fixed-point solution contribute
stability through its modulation depth

m0~z!5
2AI 1

0~z!I 2
0~z!

I 1
0~z!1I 2

0~z!
~6!
toand through the temporal variations inQ that are, due to the
PR medium response, given by

g~l!5G
lt~ I 0!

lt~ I 0!11
. ~7!

Owing to pump depletion, the fact thatm0(z)<1, and the
9-3
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O. SANDFUCHS, F. KAISER, AND M. R. BELIC´ PHYSICAL REVIEW A 64 063809
intensity-dependent relaxation time, the nonautonomous
~4! cannot in general be solved analytically. Nonetheles
formal solution is given bya(L)5F(L)a(0), whereF(z) is
the linear flow matrix. Hence the problem of linear stabil
is solved if F(L) is known. SeparatingA into trA and its
trace-free partAf5A2tr A/4, the linear flow matrix can be
calculated from

F~L !5expS E
0

L

tr A~s!dsD 3)
z50

L

dG~z!. ~8!

Since bothm0(z) and t@ I 0(z)# are monotonous functions
one is not faced with the Floquet problem, and the prod
can be obtained through a repeated multiplication of infi
tesimal rotation matricesdG(z)5exp@*z

z1dzAf(s)ds#, taken
at subsequent pointsz in the crystal. These matrix produc
have to be evaluated numerically. Taking into account
mirror boundary conditions

a1~x,y,0,t ![0, ~9a!

a2~x,y,L,t !5~TF!21$exp~ if!TF@a1~x,y,L,t !#%, ~9b!

one invertsF(L) into a scattering matrixS. The quantityf
52 f K2D/(n0L) is the propagation phase,D being the dis-
tance from the crystal to the feedback mirror,TF denotes the
Fourier transform, andn0 is the crystal’s homogeneous re
fractive index. The poles of the scattering matrix determ
the properties of an absolute instability and lead to
threshold condition~in the U basis!,

det@F111F222F122F212D~f!~F112F222F121F21!#

50, ~10!

whereFjk are 232 submatrices ofF(L) and

D~f!5S 2cos~f! sin~f!

sin~f! cos~f!
D ~11!

is a matrix involving the propagation phase. Under spe
constraints for the mirror reflectivityR51, which implies
that the modulation depthm0(z)[1, and for the constant
relaxation-time approximation (k50), Eq. ~10! can be ex-
pressed analytically@38#.

The threshold behavior at the primary instability is d
played in Fig. 2 for the caseD50. It does not depend on th
characteristic exponentk for the PR relaxation time, becaus
for any R one finds only stationary bifurcations. ForR51
the homogeneous plane-wave solution loses stability at
threshold coupling constantGcL'3.819. A small band
around the critical transverse wave vectorf Kc

2'2.592 be-
comes unstable@Fig. 2~a!#. In two transverse dimensions th
corresponds to an annulus of unstable modes, from which
nonlinear-mode interaction creates a specific pattern.

In experiments, because of Fresnel reflections and be
intensity losses from optical components in the feedb
loop @29#, the effective mirror reflectivity is typically lower
than unity. The threshold, however, turns out to be o
weakly changed by the reduction of mirror reflectivity all th
06380
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way down to aboutR50.1, and it noticeably increases on
for much lower reflectivities@Fig. 2~b!#. The reason for this
lies in the PR gain of two counterpropagating beams, so
only for small values ofR the modulation depth in the inter
action region starts deviating from unity. The spatial fr
quency of transverse modulations remains nearly unaffec

When the mirror is moved towards larger feedback d
tances (D.0), the type of threshold that is predicted b
linear stability analysis strongly depends on the model
the temporal evolution. In the case of the model withk50
there exists a critical mirror distanceDc'0.25 at which an
oscillatory instability should occur~Fig. 3! and the threshold
values differ considerably. This, however, is an artifact of t
constant-relaxation-time approximation, and it is promine
for reflectivities above 90%. The model that takes into a
count the inverse intensity dependence (k51) displays only
stationary structures. This is in perfect agreement with
perimental observations@25,26,31#. For reflectivities below
90%, any value ofk will give the same stationary instability
threshold. In Fig. 3 we have shown the case forR50.5. The
critical coupling strength slightly deviates for large mirr
distances, but the spatial frequency, i.e., the angle betw
pump and sideband beams in the optical far field, is alm
indistinguishable. So, discrepancies in the sideband a
arising between theory and experiment presumably do
originate from a nonideal feedback mirror.

IV. AMPLITUDE EQUATIONS

The question what patterns, be they stable or unsta
will be formed out of the annulus of active modes can
answered by a nonlinear bifurcation analysis. In the follo
ing we present a detailed derivation of coupled Landau eq

FIG. 2. Threshold curve forD50. ~a! Coupling strengthG as a
function of the transverse wave numberK for a stationary instability
with R51 ~lower curve! and R50.01 ~upper curve!. ~b! Depen-
dence of the critical valuesGc ~solid! andKc ~dashed! on the mirror
reflectivity R.
9-4



r
al
he
a
ll

n
e

e-

ng
tate

in-
oral

the
ar
ns
ic

the
vo-
ling
ion

r-
in
al-

oral
f

by
e.g.,

of

for
ter-
x-

r

SELF-ORGANIZATION AND FOURIER SELECTION OF . . . PHYSICAL REVIEW A 64 063809
tions for different two-dimensional planforms. Proper no
malization and renormalization of the longitudin
eigenfunctions will play an important role in determining t
coefficients for Landau equations, so that they can be qu
titatively compared with numerical simulations of the fu
nonlinear-model equations.

The nonlinear bifurcation analysis considers the time a
space evolution of deviations from the fixed-point plan
wave solutions. Upon substituting Eqs.~3! into Eqs.~1! and
~2!, and retaining all nonlinear terms, one obtains

]za11 i f ¹'
2 a15

G

11r 0
~a12a22q2a2q!, ~12a!

2]za21 i f ¹'
2 a25

Gr 0

11r 0
~a12a21q* 1a1q* !,

~12b!

S 11r 0

NA
D k

t~ I 0!] tq1q

5
~a12a2!~11a2* !2r 0~a1* 2a2* !~11a1!

r 0~11a1!~11a1* !1~11a2!~11a2* !
,

~12c!

FIG. 3. Threshold curves as functions of the mirror distanceD
for the models assuming different intensity dependence of the
laxation time: the model withk50 ~dotted line! for R51.0, the
model withk51 ~solid line! for R51.0. The dashed line is forR
50.5 with any of the twok models.~a! Critical coupling strength
Gc , ~b! critical wave numberKc , and~c! oscillation frequencyVc .
06380
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whereI 0(z)5uA1
0(z)u21uA2

0(z)u2 is the total plane-wave in-
tensity, andr 0(z)5uA1

0(z)u2/uA2
0(z)u2 is the ratio of plane-

wave intensities. The denominatorNA is identical to the de-
nominator of the right-hand side~rhs! of Eq. ~12c!. For the
general procedure of multiple-scale analysis in a bulk m
dium, where we follow an idea of Geddeset al. @11#, which
is modified to account for the PR wave-mixing and grati
dynamics, it is convenient to choose a real basis for the s
vectors of deviations via the following transformation~see
Appendix A!: (a1 ,a1* ,a2 ,a2* )T→UW 5(U1 ,U2 ,U3 ,U4)T and

(q,q* )T→PW 5(P1 ,P2)T, which brings Eqs.~12! into the
general form,

Lz;x,yUW 1M0PW 5MW
1~PW uUW !, ~13a!

@D0,t1D1,t~UW !1D2,t~UW uUW !1•••#PW 2N0UW

5NW 1~UW uUW !1NW 2~UW uUW uUW !1•••. ~13b!

Here the matricesLz;x,y and Dj ,t are the spatial- and
temporal-derivative operators, respectively. Owing to the
tensity dependence of the PR relaxation time, the temp
evolution contributes to linearD0,t and nonlinearDj ,t terms
( j 51,2, . . . ). ThematricesM0 andN0 are composed of the
coefficients of the linear coupling between the field and
grating, andMW

1 andNW j are the vectors describing nonline
field-grating and field-field interactions. The notatio
(UW uUW ) and (UW uUW uUW ) are shorthands for different quadrat
and cubic terms arising in such a procedure.

The multiple-scale analysis is based on the fact that in
neighborhood of a bifurcation point, the spatiotemporal e
lution is separable into fast and slow scales. The PR coup
strengthG is the bifurcation parameter, and the expans
parametere scales the distance from the critical pointGc at
which the modulational instability starts growing. Conside
ing a spatially homogeneous distribution of modulation,
order to describe the pattern through a Landau-type form
ism, one expands the bifurcation parameter, the temp
variable, and the field and grating amplitudes in powers oe,

G5Gc1eG (1)1e2G (2)1•••, ~14a!

t5T01eT11e2T21•••, ~14b!

UW 5enUW (1)1e2nUW (2)1e3nUW (3)1•••, ~14c!

PW 5enPW (1)1e2nPW (2)1e3nPW (3)1•••. ~14d!

The G ( j ) are as yet unknown quantities to be determined
the multiple-scale analysis. In the case of stripe patterns,
one usually chooses the scaling exponent such thatn51/2,
therefore,a priori assuming the specific scaling behavior
a pitchfork bifurcation. We have takenn51, which leads to
the same amplitude equation and, in addition, provides
the correct scaling behavior, corresponding to the charac
istics of the underlying bifurcation for both rhombic and he
agonal planforms. The latter bifurcate transcritically, son
51 is mandatory~cf. Sec. IV B!.

e-
9-5
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Even though the terms are grouped in Eq.~13b! according
to their nonlinear order, these equations still describe
evolution of all combinations of modes, and hence of
possible patterns. To study a particular pattern, one in
duces order parametersWj5Wj (T1 ,T2 , . . . ), which are
proportional to the amplitudes of critical modes on the an
lus, and may still depend on the slower time scales. Stat
ary equilateral patterns require that the amplitudeWj belong-
ing to Kc and the amplitudeWj* belonging to2Kc have the
same magnitude. So, the mode amplitudes occur in pair

In the first order ofe one recovers the linear problem

L z;x,y
c UW (1)1M 0

cPW (1)50, ~15a!

D0,T0
PW (1)2N 0UW (1)50. ~15b!

Eliminating PW (1) with T0→l recovers the linear instability
problem, Eq.~4!,

@Lz~K2!1M0D0~l!21N0#UW (1)

[@]z2A~z;K2,l!#UW (1)50. ~16!

Higher orders ine describe the nonlinear interaction of sp
tial modes and result in the amplitude equation for each
the order parameters. In the second order it is

FIG. 4. Arrays of spot pairs on the annulus of active modes:~a!
Rhombic planform (N52) with the angleu between the spot pairs
~b! Hexagonal (N53) and~c! Dodecagonal (N56) mode distribu-
tions.
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L z;x,y
c UW (2)1M 0

cPW (2)5L (1)UW (1)2M 0
(1)PW (1)

1MW
1~PW (1)uUW (1)!, ~17a!

D0,T0
PW (2)2N 0UW (2)52D0,T1

PW (1)2D1,T0
~UW (1)!PW (1)

1NW 1~UW (1)uUW (1)!. ~17b!

For a stationary pattern one hasD0,T0
51, and in Eq.~17b!

one can solve for the grating variablePW (2) and eliminate it
from Eq. ~17a!, in favor of an inhomogeneous ordinary di
ferential equation for the field variableUW (2). Stable satura-
tion of the linear exponential growth for any regular-shap
pattern is at first achieved in the third order. From the exp
sion one finds

L z;x,y
c UW (3)1M 0

cPW (3)5L (2)UW (1)2M 0
(2)PW (1)

1MW
1
c~PW (1)uUW (2)!1MW

1
c~PW (2)uUW (1)!,

~18a!

D0,T0
PW (3)2N 0UW (3)52D0,T2

PW (1)2D0,T1
PW (2)

2D1,T0
~UW (1)!PW (2)2D1,T0

~UW (2)!PW (1)

2D1,T1
~UW (1)!PW (1)

2D2,T0
~UW (1)uUW (1)!PW (1)

1NW 1~UW (1)uUW (2)!1NW 1~UW (2)uUW (1)!

1NW 2~UW (1)uUW (1)uUW (1)!. ~18b!

A specific stationary pattern may consist of any combinat
of N spot pairs on the annulus. To determine which of th
will result in a stable configuration, one derives the cub
self- and cross-coupling coefficients of all possible mode
teractions. Herefore it is sufficient to calculate the coe
cients for the bimodal interaction (N52) and, in the case
when a resonant interaction occurs for the hexagonal st
ture, the coefficients for the trimodal interaction (N53).

A. Stripes, squares, and rhombic planforms

We start out by calculating the coefficients for the inte
action of bimodal structures@Fig. 4~a!# that consist of two
pairs of critical wave vectors, and thus make the spec
ansatz for the stationary rhombic pattern,

UW (1)5uW (1)~z;Kc!S (
j 51

2

Wj exp~ iK cr j !1c.c.D , ~19!

PW (1)5pW (1)~z;Kc!S (
j 51

2

Wj exp~ iK cr j !1c.c.D . ~20!

The direction of the two mode pairs has been chosen so
r15x andr25x cosu1ysinu, whereu is the angle between
9-6
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the pairs. Square patterns are obtained foru5p/2 and stripes
represent a degenerate case when the two spot pairs m
(u50 or p).

The development of a transverse modulation in the li
fields during the propagation through the bulk PR medium
this order is described by the longitudinal eigenfuncti
uW (1)(z;Kc) of the critical mode. The propagation of modul
tions in the refractive index is captured bypW (1)(z;Kc)
5N 0uW (1)(z;Kc). The eigenfunctionuW (1) can be obtained
from the flow matrix of the linear stability problem,

uW (1)~z,Kc!5F~z;Kc!uW
(1)~0!, ~21!

where the vector of initial conditionuW (1)(0) belongs to the
kernel of the~inverse of the! scattering matrixS(Kc). Thus
the eigenfunctionuW (1)(z,Kc) is defined up to an arbitrary
factor m. In pattern formation there exists no physical co
dition to determine its value. Realizing that the real parts
the deviationsa1,2 resemble the intensity modulation of th
beam profiledI j /I j

052 Reaj1uaj u2, with uaj u2 being small
near threshold, the normalization of eigenfunctions in
first order, using the condition that Rea2(z50,Kc)51, leads
to the valuem5m (1)50.0558~for D50). The Landau coef-
ficients then provide a stationary-mode amplitude, which
be directly compared with numerical simulations or expe
mental results. It turns out to be a perfect choice for the c
of supercritical stripes and rhombi, but, unfortunately, a b
choice for the subcritical hexagons. We will resume this d
cussion in more detail in Secs. V B and V C.

As soon as one goes to higher orders in the expans
nonlinear-mode interaction occurs, and spatial Fourier mo
K50, Kc , 2Kc , and K65KcA2(16cosu) are generated
Consequently, the solution ansatz in the second order i
the form

UW (2)5uW (2)~z;K50!~ uW1u21uW2u21c.c.!1uW (2)~z;Kc!

3@V1 exp~ iK cr1!1V2 exp~ iK cr2!1c.c.#

1uW (2)~z;2Kc!@W1
2 exp~2iK cr1!

1W2
2 exp~2iK cr2!1c.c.#1uW (2)~z;K1!

3$2W1W2 exp~ iK c@r11r2# !1c.c.%1uW (2)~z;K2!

3$2W1W2* exp~ iK c@r12r2# !1c.c.%. ~22!

Since the resonant mode is formally generated, the new
plitudesVj must be introduced. The longitudinal eigenfun
tions in the second order then satisfy the equation

]zuW
(2)~z;K !5Ac~z;K !uW (2)~0;K !1sW (2)~z;K !. ~23!

The associated boundary-value problem has a solution w
everK5” Kc . For the resonant modeK5Kc , one has to ap-
ply the solvability condition known as the Fredholm altern
tive theorem. It reads

^vW ~z;Kc!usW (2)~z;Kc!&50, ~24!
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which involves the scalar product with the adjoint homog
neous solutionvW (z;Kc) and yieldsG (1)Wj5]T1

Wj . In addi-
tion to the Fredholm alternative, to avoid secular terms
must be required that]T1

Wj50, which then puts the un

known G (1)50, and one can chooseVj50. In this manner
the longitudinal eigenfunctions in the second order are co
pletely determined. Their shape and their meaning for
pattern formation will be discussed in Secs. V B and VI.

The saturation of the linear exponential growth is at fi
achieved in the third order. Here the nonlinear-mode inter
tion again generates resonant and nonresonant modes
solvability condition, applied to the resonant mode, det
minesG (2) and leads to the coupled amplitude equations
a rhombic pattern,

t0] tW15~G2Gc!W12~gpuW1u21guuW2u2!W1 ,
~25a!

t0] tW25~G2Gc!W22~gpuW2u21guuW1u2!W2 .
~25b!

These are the well-known coupled Landau equations
rhombic planforms. They provide a universal description
the self-organization of bimodal patterns, which is similar
a second-order phase transition@1#. The values of the relax-
ation rate

t05
1

gL
^vW Kc

uM 0
ct~ I 0!N 0uuW Kc

(1)&, ~26!

the nonlinear self-coupling coefficient

gp5
1

gL
^vW Kc

umW p2M 0
cnW p&, ~27!

and the nonlinear cross-coupling coefficient

gu5
1

gL
^vW Kc

umW u2M 0
cnW u&, ~28!

supplemented withgL5^vW Kc
uM̃0N02L̃uuW Kc

(1)&, where L
5GL̃, for example, reflect the specific properties of the P
2WM system under consideration~for details onmW u andnW u
see Appendix A!. The order-parameter equations are kno
to possess three different stationary solutions: the homo
neous state with the amplitudeWj50, the stripes with the
amplitudes

uW1u5A~G2Gc!/gp and W250, ~29!

and the rhombi with the amplitudes

uW1u5uW2u5A~G2Gc!/~gp1gu!, ~30!

all of them with arbitrary phases.
The cross-coupling coefficient depends only on the an

u, and reflection and rotational symmetries implyg(u)
5g(2u)5g(u1mp), with m being an integer. It is plotted
in Fig. 5~a! for the parametersR51 andD50, which we
9-7
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have used in our numerical simulations. Since the numbe
resonant cubic interactions between two different criti
modes is twice the number of self-interactions,g(u) is dis-
continuous atu50 and u5p, so that the cross-couplin
coefficientg(u→p)52gp .

For bimodal structures we find that the cross-coupling
efficient diverges asu approaches an angle ofp/3, pointing
towards the fact that the process of PR wave mixing supp
a resonant interaction between the critical modes separ
by p/3. To calculate the coefficientgp/3 one has to take into
account a third active mode, as is presented in the follow
section. In fact, when the angleu approaches 0 orp/3, the
modes overlap. Because of the mode degeneracy and
finite beam envelope, the modes have a finite spot size in
K space, and there exists a minimal angular spreadDu at
which the modes start overlapping. So, in the real phys
system the functiong(u) will behave in a continuous way.

B. Hexagonal planform

For pattern formation in the PR feedback system a re
nant interaction occurs between the critical modes that fo

FIG. 5. ~a! Cubic cross-coupling coefficientgu of Landau-type
equations for the bimodal (N52) interaction, with an arbitrary
angleu ~solid line! and forD50. The normalization factor for al
coefficients ism5m (1)'0.0558. The shaded regions indicate t
angular spread of the spots due to the finite mode width. Aster
(*) denote the coefficients belonging to the unimodal (N51) and
trimodal (N53) interactions that dominate in these regions. Abo
the dashed line the saturation is achieved in the third order.
dotted line indicates the loss of stability of rhombic planforms.~b!
Resulting bifurcation diagram for stationary substructures of
dodecagonal spot arrangement (N56, separatrix branches are n
shown!. Hp, hexagons;Dp, dodecagons;S, stripes;Sq, squares;
and Rh, rhombi with an angleu5p/6. Solid ~dotted! lines indicate
the stable~unstable! branches.
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a hexagonal structure. It consists of the superposition
three spot pairs@Fig. 4~b!# rotated by an angle of 2p/3.
Therefore, one has to determine the cross-coupling co
cient gp/3 separately. The ansatz for a stationary hexago
pattern reads as

UW (1)5uW (1)~z;Kc!S (
j 51

3

Wj exp~ iK cr j !1c.c.D , ~31!

PW (1)5pW (1)~z;Kc!S (
j 51

3

Wj exp~ iK cr j !1c.c.D , ~32!

where the direction of the mode pairs can be chosen asr1

5x, r25(2x1yA3)/2, andr352(x1yA3)/2. The longi-
tudinal eigenfunctions in the first order are again given
Eq. ~21!.

In the second order, the spatial Fourier modesK
50, 2Kc , K15A3Kc , andK25Kc are generated and sinc
the resonant mode is excited, again new amplitudesVj must
be introduced and one has to apply the compatibility con
tions in the form of the Fredholm alternative@Eq. ~24!#. In
contrast to the case of rhombi, for the hexagonal-mode in
action one obtains a nontrivial contributionG (1)Wj

52gHWk* Wl* with j ,k,l 51,2,3 cyclic. The coefficient be
longing to the resonance among critical modes is given b

gH5
2

gL
^vW Kc

uM 0
cNW 1~uW Kc

(1)uuW Kc

(1)!2MW
1
c~pW Kc

(1)uuW Kc

(1)!&, ~33!

so that nowVj52Wk* Wl* . For PR 2WM withR51 andD
50 the quadratic coefficient is calculated to begH
'213.94, so theHp branch bifurcates subcritically. Th
eigenfunctionuW (2) that modifies the longitudinal behavior i
of the form

uW (2)~z,Kc!5rmuW (1)~z,Kc!1SW (2)~z,Kc!. ~34!

Here the Fredholm alternative introduces a second arbit
factorr, which must not be rescaled bym, for reasons to be
discussed in Sec. V C.

In the second order, the resonant nonlinear-mode inte
tion cannot stabilize linear exponential growth, as it was a
pointed out in Ref.@36#, and the asymptotic expansion has
be carried out to third order. In this manner one obtains a
plitude equations for the hexagonal pattern, which have
universal form

t0] tW15~G2Gc!W12gpuW1u2W11gHW2* W3*

2gp/3~ uW2u21uW3u2!W1 , ~35!

and analogously forW2 andW3 through the cyclic permuta
tion of indices. These are the well-known coupled Land
hexagon equations with the hexagonal cross-coupling co
cient in the cubic order

ks

e

e

9-8



ffi

,

ry

n

on

n
d-
te
ili
pe

tte
ow
u-
b
b
ti

a
on

o
b
a
in

in

f

pe-

m
hes,

the

the
of
and

-
xa-
sec-

nd
m-

p-
of
de-
ns
the
and
rns,
One
ion
n
for
as
ties,

SELF-ORGANIZATION AND FOURIER SELECTION OF . . . PHYSICAL REVIEW A 64 063809
gp/35
gH

gL
„^vW Kc

uM̃0N02L̃uuW Kc

(2)&1^vW Kc
uM̃0NW 1~uW Kc

(1)uuW Kc

(1)!

2M̃W
1~pW Kc

(1)uuW Kc

(1)!&…1
1

gL
^vW Kc

umW p/32M 0
cnW p/3&. ~36!

It consists of two partsgp/35gp/3
0 2rmgH , as a conse-

quence of Eq.~34!, and is in whole proportional tom2. Here
gp/3

0 denotes the the part of the cubic cross-coupling coe
cient for whichr50.

Besides the homogeneous state and stripe patterns
coupled Landau hexagon equations@Eq. ~35!# possess as a
stationary solution a regular hexagon with the amplitude@15#

uW1u5uW2u5uW3u5
~21!ngH6AgH

2 14G~G2Gc!

2G
,

~37!

where G5gp12gp/3 . Since the phases are not arbitra
here, and their sum must fulfillC5c11c21c35np, one
distinguishes the positive hexagons (H0) with integer n
even, and the inverted haxagons (Hp) with n odd. The states
with discrete total phaseC belong to the so-called phaso
modes. They arise for planforms with 2N>5 @17#.

C. Stability and coexistence of photorefractive planforms

From the coefficients of bimodal and trimodal interacti
that were calculated in the previous sections@Fig. 5~a!#, we
are now able to determine analytically the stability of pla
forms with anyN-modal structure occurring in the PR fee
back system. We consider the situation where the sys
develops almost perfect patterns and restrict the stab
analysis of Landau equations to spatially homogeneous
turbations~see, e.g.,@17,18#!. Among the patterns withN
52 one generically finds that the stripes are stable ifgu
.gp , whereas the rhombi become stable ifgu,gp . For the
PR system considered here, in particular, the square pa
(u5p/2) is stable with respect to the stripes, and narr
rhombi ~with u5p/6) are unstable. They both bifurcate s
percritically. In general, a stripe pattern can never be sta
in the parameter region of a system permitting a sta
square pattern, because there exists no separatrix solu
For the hexagonal patterns (N53), only the subcritical
branch shows stable solutions. For the PR system we h
gp/3.gp and the stripes become stable while the hexag
become unstable for some higher values ofG. Within the
framework ofN53 pairs this leads to the phenomenon
stripe-hexagon competition. As a consequence of the sta
ity of the square pattern in the PR feedback system, we
ticipate square-hexagon competition instead. In the follow
we determine its onset. To describe the coexistence
squares and hexagons, one must consider at least the
action ofN56 mode pairs@Fig. 4~c!#, given by the Landau
dodecagon equations@17,19#,
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t0] tW15~G2Gc!W12gpuW1u2W11gHW2* W3*

2gp/3~ uW2u21uW3u2!W12gp/2uW4u2W1

2gp/6~ uW5u21uW6u2!W1 , ~38!

and analogously forW2 andW3, and

t0] tW45~G2Gc!W42gpuW4u2W41gHW5* W6*

2gp/3~ uW5u21uW6u2!W42gp/2uW1u2W4

2gp/6~ uW2u21uW3u2!W4 , ~39!

and analogously forW5 and W6. They contain two sets o
hexagons rotated by an angle ofp/2, and hence allow for the
description of 12-fold quasiperiodic patterns and the com
tition of hexagons and squares. The coupling coefficientsgu
involved in this interaction can be immediately read fro
Fig. 5~a!. Besides the square and the hexagon branc
whose amplitudes are given by Eqs.~30! and ~37!, there
exists a branch of equilateral dodecagonal pattern with
amplitude

uW1u5•••5uW6u5
~21!ngH6AgH

2 14GD~G2Gc!

2GD
,

~40!

where GD5gp1gp/212gp/312gp/6 . We are interested in
the stability for each of these three patterns, which are
only potentially stable stationary solutions. The stability
the general Landau dodecagon equations was obtained
discussed in previous works@17,52#. Here we discuss impor
tant results for the PR feedback system. We find that he
gons dominate near primary threshold but there exists a
ondary threshold

GSq2Gc5gH
2 gp1gp/2

~gp2gp/31gp/22gp/6!
2

~41!

with GSqL'6.78, at which the squares become stable a
coexist with the hexagons. Along this square-hexagon co
petition, a parameter region emerges starting at

GD2Gc5
1

4
gH

2 3gp/22gp22gp/316gp/6

~gp12gp/32gp/222gp/6!
2

, ~42!

with GDL'6.71, in which a stable dodecagonal pattern a
pears, so that tristability is possible. The stability scenario
the stationary substructures of dodecagonal planforms is
picted in Fig. 5~b!. Whether the squares or the dodecago
become stable first, depends sensitively on the values of
cross-coupling coefficients. The coexistence of squares
hexagons does not necessarily imply dodecagonal patte
as the dodecagon branch might be completely unstable.
has to keep in mind, of course, that an asymptotic bifurcat
analysis is qualitatively valid only until the next bifurcatio
occurs in the full nonlinear system. However, the model
PR 2WM with intensity-dependent relaxation time h
proven rather robust against secondary phase instabili
9-9
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e.g., and hence we expect the dodecagonal patterns t
present in this nonlinear optical-feedback system.

V. NUMERICAL RESULTS

Analytical bifurcation theory, presented so far, predi
the threshold for the onset of pattern formation and the
currence of an unstable annulus of spatial frequencies f
which nonlinear-mode interaction, in correspondence w
the amplitude-equation formalism, creates a definite pat
possessing a finite number of spatial-mode amplitudes.

For almost a decade, extreme difficulties in the numer
integration of the full set of nonlinear two-wave mixing, Eq
~1! and~2!, based on the reflection-grating type of interacti
in a bulk photorefractive medium, have caused a lack
numerical results for patterns appearing in two transve
dimensions. However, they are solely needed for compar
of theory with experimental observations, and to corrobor
plenty of previously obtained analytical results. For mirr
distancesD.0 nonlinear bifurcation analysis quickly be
comes extremely involved@36#. Similar difficulties may ap-
pear in the multiple-pattern region discovered in experim
@31#.

Numerical simulations are performed using a bea
propagation method that has been developed earlier in R
@27,38# to display transverse patterns in one dimension~1D!,
and that is appropriately modified to account for 2D. T
difficulties in numerical treatment arise from the count
propagation of the beams under two-point boundary con
tions in a spatially extended system. A relaxation-type in
gration scheme of second order was found necessary, w
convergence puts extensive requirements on the comp
memory and execution time. For a brief outline of this n
merical integration scheme see Appendix B.

In optics, contrary to most of the hydrodynamic and f
romagnetic systems, e.g., the beam profiles are constra
to a finite lateral extent. A laser beam typically has a Gau
ian envelope and the corresponding aspect ratio is low.
cause of that, in photorefractive wave mixing the spatiote
poral attractors obtained so far have not been shown
possess domain boundaries or front dynamics. A high
aspect-ratio can be achieved if the beam is broadened, so
a plateau forms. To accomplish higher-aspect-ratio con
tions for the simulations, we have chosen the incident en
lope of the pumpA1 to have the shape of a hyper-Gauss
beam, while the incident envelope ofA2 is determined by
what is reflected back from the mirror,

A1~x,y,0,t !5A1 exp@2~x21y2!n#, ~43a!

A2~x,y,L,t !52AR~TF!21$exp~ ifK!TF@A1~x,y,L,t !#%,
~43b!

wheren is the order of the hyper-Gaussian beam. Here
report the results for the casen54 ~Fig. 6!, all simulations
being done forD50 andR51 with the diffraction param-
eter f 50.034. This corresponds to an aspect ratio of ab
20.

A numerical grid of 1283128 points in the transvers
plane and 300 points along the propagation direction
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taken. The maximal spatial frequency that can be resolve
Kmaxw0/2p'6.3, which corresponds to about 4Kc . It turns
out that at least 3Kc is required for the spectrum to suffi
ciently saturate higher modes and to produce physically
sonable mode amplitudes.

A. Spontaneous hexagon formation

The broken inversion symmetry in the PR wave-mixi
process causes the hexagonal structure to be the pref
pattern in the neighborhood of the primary threshold. Ad
batically approaching the instability threshold from belo
for the value of the coupling strength very close toGc , a
hexagonal pattern spontaneously forms out of the initia
homogeneous beam profile~Fig. 7!. At t580tPR a linearly
unstable annulus of active modes becomes visible in the
tical far field, although only very faint as compared to t
pump beam. The nonlinear-mode interaction causes
breakup of this annulus into a structure of six beanlike sp
which eventually grow to form the hexagon, and the high
harmonic modesA3Kc and 2Kc appear. This confirms recen
experimental observations of the temporal evolution towa
the hexagon state@28#. In the near field, at the output faces
the crystal, one immediately recognizes that the hexago
patterns occur with opposite phases, i.e., atz50 the inverted
hexagons with the total phaseC5p form, whereas atz
5L the positive hexagons withC50 are visible. This an-
tiphase behavior is a characteristic feature of PR patterns
has been reported earlier for one-dimensional structures@38#,
where it led to stripelike modulations at the opposite faces
the crystal, which were spatially shifted with respect to ea
other because of the translational invariance. However, he
gons possess an intensity profile with broken inversion sy

FIG. 6. Transverse intensity profile of beamI 1 as it enters the
crystal atz50 in the numerical grid of 1283128 points. The inten-
sity is normalized to the intensity of the beam center.
9-10
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FIG. 7. Temporal evolution of transverse
beam profiles, depicting the development of
hexagonal structure out of the homogeneous s
for GL53.9, R51, andD50. Near-field pattern
of the amplified beamI 2(z50) ~left column!,
near-field pattern of the depleted beamI 1(z5L)
~middle column!, and the spatial Fourier spec
trum in the far field of the beamI 1(z5L) ~right
column! are presented at different instances
time. Upper to lower row: transient patterns
t/tPR580,240,360,440 and the attractor att/tPR

52000. The contour levels of the far-field pa
terns have been chosen differently to clearly d
play the mode structure, and as a consequence
brightness of the pump beam may vary.
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metry, and the antiphase behavior immediately results in
simultaneous appearance of the two different types of he
gons at the two output faces.

Before we discuss this phenomenon in more detail, le
present the temporal evolution into the hexagonal patt
where this time a delta-peak-like perturbation of the refr
tive index is applied in the middle of the crystal to excite t
active modes more strongly. For the coupling strengthGL
53.9 we obtain the same transient behavior as in Fig
however, for a value ofGL54.0 the transient is rather dif
ferent ~Fig. 8!.

Despite the uniform perturbation inK space, a squarelike
modulation emerges on the top of the annulus. Each o
stripelike substructures gives rise to a hexagonal subst
ture. The two hexagons are rotated byp/2 and form a dode-
cagonal structure. Since the dodecagon is unstable in
region of parameter space@cf. Fig. 5~b!#, the two hexagona
substructures start competing with each other, leading to
formation and the long dynamics of penta-hepta defe
Eventually, all defects reach the edge of the beam profile
disappear, and in the steady state again a regular hex
forms.

The intensity dependence oft has no influence on the
steady state, and does not change qualitatively our res
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close to the stationary primary-instability point. It may affe
the slow temporal evolution of transient patterns. Howev
as shown for the temporal evolution of transverse modu
tions in 1D @38,53#, the transient dynamics indeed becom
slower by two orders of magnitude, but without affecting t
transverse shape of primary modulations. Traveling wa
caused by the secondary instabilities were shown to pos
much higher thresholds or may even be altogether imped
This should make the predicted square-hexagon compete
more likely to be observable.

B. Longitudinal-mode propagation

In the following we discuss the longitudinal propagatio
of transverse modes through the PR medium. As mentio
above, an antiphase behavior of transverse pattern
present. It originates from the longitudinal propagation of t
pattern within a bulk nonlinear medium. The eigenfunctio
that describe the longitudinal propagation of each transve
mode have been calculated analytically from the linear sp
trum of the corresponding eigenfunctions using t
amplitude-equation formalism in Sec. IV B. We will focus o
the propagation of the two lowest-order modes: the criti
modeKc and the first higher-order modeA3Kc of a hexagon.
9-11
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FIG. 8. Temporal evolution of transverse
beam profiles depicting the development of
hexagonal structure out of the homogeneous s
for GL54.0, R51, andD50. The notation is as
in Fig. 7, except that the transient patterns a
shown for t/tPR5300,500,700,1600 and the a
tractor for t/tPR55000. The development of de
fect pairs is clearly visible.
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The spatial modes from numerical data are localized
the near field and have a broadened spot size in the op
far field. Therefore, their mode amplitudes are taken as
amplitudes of the envelope of the wave packet. In perfo
ing the analytical treatment we assumed the homogene
fixed-point solution to be infinitely extended in the tran
verse direction, i.e., we restricted the analysis to an infinit
high aspect ratio. As a consequence one should encou
discrepancies that become more prominent as the aspect
is lowered, or as less modulations occur compared to
unmodulated beam envelope@54#. The hyper-Gaussian beam
profile approximates the assumption of an infinitely extend
modulation from the analysis more closely, and the discr
ancies remain rather small.

Figure 9 compares the analytical eigenfunctions to
results obtained from the numerical simulations. All eige
functions have been normalized to Rea2(z50,Kc)51 for
better comparison. As a consequence of the nature of
first-order phase transition and the fact that the stable s
tion only comes with very large amplitude, there are noti
able deviations in the propagation of the real and imagin
parts of eigenmodes from the analytical prediction for diff
ent values ofG on the hexagon branch. The best agreem
is found for GL53.32 at the lower hysteresis point. Th
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phase between the pump and the sideband beams~carried by
the eigenfunction! rotates with an increasing bifurcation pa
rameterG. To circumvent this problem we chooseua2(z
50,Kc)u51 for normalization, to extract the hexagon an
stripe amplitudes plotted in Fig. 10. This choice, howev
will yield coefficients that are quantitatively meaningle
without the explicit knowledge of the eigenfunction at th
place where the pattern is observed.

The development of transverse structures through
crystal can be viewed in a more physical manner by look
at the light-intensity modulationdI 1,2 @Figs. 9~c! and 9~f!#.
The intensity profiles have to be taken with caution thou
when used for displaying the development of a specific m
because in calculating intensities different spatial mo
might mix. Starting from the unmodulated input profil
there are regions where the modulation is positive, i.e.,
intensity in the beam center is maximal and the correspo
ing pattern phase isC50. For the backward-propagatin
beam there is a region where the modulation is negative
the pattern phase isC5p. This is the origin of the antiphas
behavior of patterns at the opposite output faces of the c
tal. The modeA3Kc displays nodes at the propagation d
tancesz where its amplitude vanishes. The combination of
9-12
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FIG. 9. Longitudinal propaga-
tion of transverse modes. Analyti
cal eigenfunctions ~solid lines!
and numerical eigenfunctions fo
GL53.32 ~dashed! andGL53.80
~dotted! are presented.~a! Real
and ~b! imaginary parts, and~c!
relative intensity modulation of
the hexagon modeKc . ~d!–~f!
The same for the hexagon mod
A3Kc . Each plot depicts both the
forward- and backward-
propagating beams indicated b
arrows.
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tranverse modes with their different mode amplitudes for
the series of intensity patterns, as in Fig. 11. Two lateral c
through the intensity profileI 2(z50) of Fig. 11~d! across the
x and y direction, respectively, reveal a large spatial mod
lation of the amplitude, as a consequence of the first-or
phase transition. Locally the intensity rises almost th
times above the homogeneous background@Fig. 12~a!#. Such

FIG. 10. Amplitude of the modulated structure for one spot p
of the critical modeKc as a function of the coupling strength in th
case of inverted hexagons (Hp) and stripes (S). Solid ~dashed! line
denotes the stable~unstable! branches obtained by the amplitud
equations for the self-organized structures. The normalization fa
is m5mm

(1)'0.0476. Results from the numerical simulations of se
organized hexagons and of the Fourier-controlled stripes are re
sented by bullets. The dotted lines are a guide for the eye.
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a large pattern amplitude indicates that a strong renorma
tion for the asymptotic expansion is present.

C. Subcritical hexagons and strong renormalization

From the discussion in the previous section it is clear t
the absolute value of the order parameterW, given by the
amplitude equation, loses its physical meaning without

explicit knowledge of the longitudinal eigenfunctionuW (z) in
the bulk medium. Moreover, the critical-mode amplitudeaKc

and the pattern amplitudea must clearly be distinguished, a
they certainly coincide only very close to the threshold. T
pattern amplitude is a superposition of the order parame
multiplied by the eigenfunctions at the propagation positioz
where the pattern is observed. However, the mode am
tudes obtained from the analysis can still give rather accu
results even far away from the threshold, depending on h
strong the renormalization of the longitudinal behavior is a
how many higher orders have to be taken into account.

The first-order phase transition of hexagons is accom
nied by a large pattern amplitude near the bifurcation po
hence a strong renormalization of the eigenfunctionuW (z,Kc)
is anticipated. In the following we determine the strength
the renormalization according to our multiple-scale exp
sion. Assuming that the hexagon has the form as in F

r

or
-
re-
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11~d!, the amplitudes equaluWHu and the phases obe
c15c25c35cH5p. Combining the expansion ansa
~14c! with Eqs.~31! and ~22!, the amplitude of the hexago
at the beam center is given by

a2,Kc
~0,0,z!53@r 3

(1)~z!uWHucos~cH!

12r 3
(2)~z!uWHu2 cos~2cH!#

1~higher-order terms!. ~44!

53F r 3
(1)~z!

1
2gH

G
r 3

(2)~z!G uWHucos~cH!

16
G2Gc

G
r 3

(2)~z!

1~higher-order terms! ~45!

'3r 3
(tot)~z!uWHucos~cH!, ~46!

wherer 3(z,Kc) is the third component of the eigenfunctio
in the untransformed basis, and where the term proportio
to (G2Gc)/G is negligible up to this order. Renormalizatio
of the total eigenfunction according to Rer 3

(tot)(z50)51
will modify the normalization factor. It can be expressed
the product of the normalization factors at each order. In
casem5m (1)m (2), where the factor at second order reads

m (2)5
11hcrm (1)

12hc ReS̃3
(2)~0!

, ~47!

FIG. 11. Transverse patterns of the light field of the forwa
propagating beamI 1 ~a!–~c! and of the backward-propagating bea
I 2 ~d!–~f! at different positions within the crystal:z50 ~a! and~d!,
z5L/2 ~b! and~e! andz5L ~c! and~f!. GL53.8 slightly below the
bifurcation point.
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with the critical ratiohc52(21)ngH /G0, and S̃3
(2) is the

inhomogeneous part of Eq.~34! in the untransformed basis
If a strong renormalization factor is foundm (2)5” 1, it leads
to discrepancies between the critical-mode amplitude and
order-parameter. This phenomenon is related to the subc
cality dilemma, arising in the asymptotic expansion to obt
Landau equations for a first-order phase transition, wh
subsequent orders become comparable andhc is of the order
of one. However, for order-parameter equations like Eq.~35!
or Eqs.~38! and ~39! to be still a valid approximation, the
normalization must be unique for all planforms, simult
neously. Consequently, we have chosenm5m (1) such that
the eigenfunctions for the rhombi are normalized, andm (2)

now becomes a scaling factor due to the renormalization
the hexagons. As mentioned above, for hexagons it is ne
sary to normalize the moduli of amplitudes, because
phase of the eigenfunction rotates with increasing bifurcat
parameter. Therefore, the hexagon-mode amplitude in
10 is related to the order parameter from Fig. 5~b! by

ua2,Kc
~z50!u5

1

mm
(2)

m (1)

mm
(1)

uW1u, ~48!

where mm denotes the normalization for the moduli. Th
yields a scaling factor due to renormalization ofmm

(2)'0.4,
and a strong renormalization indeed occurs.

If the renormalization was weak, the free parameterr @cf.
below Eq.~36!# could be chosen arbitrarily, e.g., according
an orthogonality condition, because thenm (2) andgp/3 would
be nearly independent ofr. This, however, is not the cas
here andgp/3 strongly depends on the choice ofr. We de-
cided to determine its value by a fit of the analytical curve
our numerical results in such a way that the ratio ofgH and
gp/3 yields the same hysteresis, taking into account that

-

FIG. 12. Cuts through the transverse-intensity profiles of
beam I 2(z50), as in Fig. 11~d!. ~a! Cut alongy50 and ~b! cut
alongx50 in the direction of oneK vector. Intensities are normal
ized to the input beam intensityI 1(x,y,z50).
9-14
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SELF-ORGANIZATION AND FOURIER SELECTION OF . . . PHYSICAL REVIEW A 64 063809
cause of the low aspect ratio of patterns, the amplitudes f
numerics always lie somewhat below the analytical valu
In this mannerr57.30 and we obtaingp/3535.38. This pro-
cedure is, of course, unsatisfactory from a theoretical p
of view. The question of how to determiner in an analyti-
cally consistent way may only be answered if the multip
scale expansion is carried out to higher orders.

VI. FOURIER SELECTION

Both our analytical calculations and numerical simu
tions have shown that close to the primary threshold,
hexagonal pattern is the only stable structure whenD50 and
R51. But it also has become clear that a majority of p
terns, in fact any regular array of 2N spots out of the annulu
of active modes, exists as an unstable stationary solutio
is now desirable to have an access to these structures
manipulate the system to select and stabilize the unst
states@39#. Such an approach provides us, on one hand, w
access to the whole set of possible pattern states, and o
other hand, with a broader insight into the underlying mec
nisms in the process of pattern formation in a bulk PR m
dium.

Motivated by the Fourier-filtering technique that has be
used in experiments so far@49#, we use the same filtering
technique and study its impact on this pattern-forming s
tem. A Fourier-filter maskf R(Kx ,Ky) is inserted into the
feedback path~Fig. 13! to manipulate the mirror boundar
conditions for certain spatial modes, which we want to s
press. It is important to note that the pump beam must no
disturbed in any way. Black areas in the filter mask absorb
spatial components, and thus are equivalent to a zero bo
ary condition for the modesK such thata2,K(z5L)50. Un-
doubtedly, the method is strongly invasive, as it alters
boundary conditions and hereby switches some of the ac
modes to passive ones. So, one may expect not to be ab
stabilize unstable eigenstates of the filterless system in
way.

Figures 14 and 15 display the stripe and square patt
that are successfully selected by applying the correspon
Fourier masks presented in Figs. 16~a! and 16~b!. In the near
field both patterns again show the typical antiphase beha
characteristic of PR pattern formation. Despite the invas
filtering, the stripe pattern completely coincides with the u
stable stripe solution of the filterless system. Both its am
tude from Fig. 10 and its longitudinal eigenfunction@Figs.
17~a! and 17~b!# are in good agreement with the analytic
curves calculated for the originally unstable stripe state.

When the Fourier filtering is applied to the case

FIG. 13. Geometry of the feedback loop supplied with the fil
mask f R placed in the Fourier plane.
06380
m
s.

t

-

-
e

-

It
nd
le

th
the
-
-

n

-

-
e
ll
d-

e
ve

to
is

ns
ng

or
e
-
i-

f

squares, the lowest-order interaction modesK65A2Kc ,
among other higher-order modes, are blocked by the ch
of the filter mask. However, this does not mean that
higher harmonic modes remain zero throughout the crys
From Figs. 17~d! and 17~e! it is seen that the nonlinear bul
medium tends to recover the form of the longitudina
propagation mode. The propagation of the critical modeKc
of the square pattern is not affected by the lack of the in
action modes. Nevertheless, higher harmonic modes are

r

FIG. 14. Stripe pattern forGL54.1 when the slit filter mask is
present in the feedback loop.~a! Near-field pattern of the deplete
and ~b! of the amplified beam.~c! and ~d! are the corresponding
far-field patterns.

FIG. 15. Square pattern forGL54.1 when the cross-filter mas
is present in the feedback loop. Notation is the same as in Fig.
9-15
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O. SANDFUCHS, F. KAISER, AND M. R. BELIC´ PHYSICAL REVIEW A 64 063809
sential constituents of the desired pattern and should no
suppressed by the filter, thus a more careful choice of ma
is required as it is noted in Ref.@39#.

Even though we are using an invasive filtering techniq
an important feature of the self-organization process can
inferred from it. When the stripes have been selected
they reach steady state, replacing the slit filter by the cr
filter will make the squares appear. The fact that the squ
can be selected in this way at all is a direct consequenc
the stability of the square pattern. Within the subsystem
fined by the filter, the squares are stable with respect to
stripes @cf. Fig. 5~a!#. Furthermore, the invasive filterin
method provides an important indication for the squa
hexagon competition in the PR feedback system in the
rameter region considered.

FIG. 16. Spatial Fourier-filter masksf R(Kx ,Ky). ~a! Slit and~b!
cross filter.
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If the stripe solution was selected in either of the tw
perpendicular directions of the cross filter, it would be
strong indication for the effect of stripe-hexagon competiti
rather than square-hexagon competition. But obviously,
is not the case.

VII. CONCLUSIONS

The present paper, for the first time to our knowled
since the initial experimental observations, presents num
cal simulations of two-dimensional patterns in a bulk pho
refractive crystal with a single feedback mirror. Thus far e
ergy transfer between two beams and the interaction
reflection gratings in a spatially extended system have p
cluded simulations of the full set of nonlinear wave-mixin
equations. With our relaxation-type integration scheme
are able to study the spontaneous formation of tw
dimensional structures in the transverse-beam profiles, t
longitudinal development within the nonlinear optical cry
tal, and the effects of Fourier filtering on the mode-select
process.

In the self-organization process hexagons are identifie
the predominant patterns above the primary instabi
threshold. The longitudinal variation of the wave-mixin
process, through the change in the refractive index, cau
the breaking of the inversion symmetry. Out of the homog
neous beam profile the faint annulus of transverse mo
develops in the first stage. For weak initial perturbatio
e

d
-

FIG. 17. Longitudinal propa-
gation of transverse modes in th
geometry with filter. Analytical
eigenfunctions ~solid lines! and
numerical eigenfunctions with
GL54.0 for stripes~dashed! and
squares~dotted! are displayed.~a!
Real and~b! imaginary parts and
~c! relative intensity modulation
of critical modeKc . ~d!–~f! The
same for the square modeA2Kc .
Each plot depicts the forward- an
backward-propagating beams in
dicated by arrows.
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SELF-ORGANIZATION AND FOURIER SELECTION OF . . . PHYSICAL REVIEW A 64 063809
hexagons then immediately arise through the breakup of
unstable annulus. They appear through a subcritical bifu
tion with a prominent hysteresis and a large amplitude. In
PR pattern formation an antiphase behavior is observ
which results in the simultaneous appearance of the pos
and inverted hexagons at the opposite output faces of
crystal. Penta-hepta defects may cause a long transien
namics, but eventually they disappear at the edges of
beam profiles.

The linear instability threshold and the angle of the sid
band beams turn out to be very robust against the reduc
of mirror reflectivity. Whether stationary or oscillatory inst
bilities occur depends strongly on the model for the pho
refractive time constant. The typical inverse intensity dep
dence of the relaxation time leads to the correct prediction
stationary patterns for real mirror distances, in accorda
with the experiments.

The stability and coexistence of planforms has been
termined by a multiple-scale analysis, leading to the coup
Landau equations for anyN-modal structures. The cubic sel
and cross-coupling coefficients for a mirror with high refle
tivity placed at the exit face of the crystal have been cal
lated, carefully incorporating and discussing the normali
tion of longitudinal eigenfunctions for a quantitativ
comparison with our numerical results, including eigenfun
tions of higher-order modes.

For an array of six spot pairs the nonlinear bifurcati
analysis predicts the occurrence of square-hexagon com
tion rather than the stripe-hexagon competition and, mo
over, a parameter region where a stable dodecagonal pa
should be observable in the PR feedback system. Becau
the extreme computational requirements this could not ye
confirmed by our numerical-integration procedure.

Along with the first-order phase transition, a strong ren
malization factor has been determined for the hexago
mode interaction. Hence the hexagon amplitude consider
deviates from the order parameter obtained by the Lan
equations. This phenomenon is related to the subcritica
dilemma here, for example, occurring for the hexagon
mode interaction, which arises in the asymptotic expansio
subsequent orders become comparable. Regardless of th
der ~cubic or higher! of the expansion, one must always e
sure that normalization is unique for all planforms simul
neously.

An invasive Fourier-filtering method has been used to
lect stripes and squares that are otherwise unstable solut
For wave mixing in a bulk medium the filter mask chang
the boundary conditions for certain modes and tends to s
press them. However, the finite medium partly recovers
propagation of these modes and the squares could be
cessfully selected by a cross-shaped filter. Yet, the inva
Fourier filtering may provide deeper insight into the patte
formation processes of the filterless system, as an indic
of square-hexagon competition, e.g. Although the stripe p
tern obtained with a filter completely coincides with the u
stable stripe state without filter calculated from the nonlin
analysis, one should not yet speak of pattern control in
context, in the sense that unstable eigensolutions have
stabilized. It remains to be seen by means of a more rigor
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theoretical proof, whether a static manipulation method
capable of stabilizing unstable eigenpatterns in the feedb
system within a nonlinear bulk photorefractive medium.

APPENDIX A: VECTORS AND MATRICES
OF NONLINEAR INTERACTION

In the following we present the details of the field-gratin
and nonlinear-mode interaction involved in the multipl
scale anlysis to obtain the amplitude equations for patt
formation in PR wave mixing. The general form of the wav
mixing equations~13!, listed here again for completeness,

Lz;x,yUW 1M0PW 5MW
1~PW uUW !, ~A1a!

@D0,t1D1,t~UW !1D2,t~UW uUW !1•••#PW 2N0UW

5NW 1~UW uUW !1NW 2~UW uUW uUW !1•••, ~A1b!

presents the starting point of our expansion procedure, wh
we follow an idea by Geddeset al. @11#. The idea is con-
ceived for wave mixing in Kerr media, and needs to
modified to be applicable to the grating dynamics occuring
PR wave mixing with slow medium response. Equatio
~A1! are obtained from Eqs.~12! by a basis transformation
from the complex vectors of deviations to a real~412!-
dimensional vector space,

S U1

U2

U3

U4

D 5S 1 1 21 21

2 i i 2 i i

1 1 1 1

2 i i i 2 i

D S a1

a1*

a2

a2*
D , ~A2a!

S P1

P2
D 5S 1 1

2 i i D S q

q* D . ~A2b!

We prefer the~412!-dimensional to the six-dimensional vec
tor space used by Lushnikov@36#, because the grating vari
ables can be eliminated at each order of the expansion,
one is left with a four-dimensional problem, instead.

Equations~A1! are general in the sense that they descr
the behavior of wave mixing independent of whether t
interactions of field and grating variables originate from tw
or four-wave mixing, and they apply to both the stationa
and oscillatory instabilities.

The notations (UW uUW ) and (UW uUW uUW ) denote the products o
different quadratic and cubic nonlinearities. In the case of
two-wave mixing discussed in the text, the general inter
tion matrices and vectors are given for the caseR51. The
spatial- and temporal-derivative operators are

Lz;x,y5S ]z2G 2 f ¹'
2 0 0

f ¹'
2 ]z 0 0

0 0 ]z 2 f ¹'
2

0 0 f ¹'
2 ]z2G

D , ~A3!

D0,t5t~ I 0!] t11, ~A4!
9-17
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D1,t52
k

2
t~ I 0!U3] t , ~A5!

D2,t52
k

16
t~ I 0!@U1

21U2
223U3

21U4
222~k21!U3

2#] t ,

~A6!

where the matricesDj ,t have been reduced to scalar ope
tors becauset(I 0) is real valued. The linear coupling matr
ces read as

M05GS 0 0

0 0

1 0

0 1

D , ~A7!

N05S 0 0 0 0

0 0 0 1D ~A8!

and the nonlinear field-field and field-grating coupling resu
in the vectors

MW
15

G

4 S P1 P2 0 0

P2 2P1 0 0

0 0 2P1 2P2

0 0 2P2 P1

D S U1

U2

U3

U4

D , ~A9!

NW 152
1

4 S U1
21U4

2

U1U21U3U4
D , ~A10!

NW 25
1

16S 2U3~U1
21U4

2!

2U1U2U32U4~U1
21U2

22U3
21U4

2!
D .

~A11!

One recognizes that up to third order none of the non
ear temporal derivatives contributes to the dynamics of
Landau equation. The nonlinear self-coupling coefficientgp ,
given in Eq.~27!, depends on the longitudinal eigenfunctio
of the first and second order through

mW p52MW
1
c~pW Kc

(1)uuW K50
(2) !12MW

1
c~pW K50

(2) uuW Kc

(1)!1MW
1
c~pW Kc

(1)uuW 2Kc

(2) !

1MW
1
c~pW 2Kc

(2) uuW Kc

(1)!, ~A12!

nW p52NW 1~uW Kc

(1)uuW K50
(2) !12NW 1~uW K50

(2) uuW Kc

(1)!1NW 1~uW Kc

(1)uuW 2Kc

(2) !

1NW 1~uW 2Kc

(2) uuW Kc

(1)!13NW 2~uW Kc

(1)uuW Kc

(1)uuW Kc

(1)!; ~A13!

the rhombic cross-coupling coefficientgu , in Eq. ~28!,
through
06380
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mW u52MW
1
c~pW Kc

(1)uuW K50
(2) !12MW

1
c~pW K50

(2) uuW Kc

(1)!12MW
1
c~pW Kc

(1)uuW K1

(2) !

12MW
1
c~pW K1

(2) uuW Kc

(1)!12MW
1
c~pW Kc

(1)uuW K2

(2) !

12MW
1
c~pW K2

(2) uuW Kc

(1)!, ~A14!

nW u52NW 1~uW Kc

(1)uuW K50
(2) !12NW 1~uW K50

(2) uuW Kc

(1)!12NW 1~uW Kc

(1)uuW K1

(2) !

12NW 1~uW K1

(2) uuW Kc

(1)!12NW 1~uW Kc

(1)uuW K2

(2) !12NW 1~uW K2

(2) uuW Kc

(1)!

16NW 2~uW Kc

(1)uuW Kc

(1)uuW Kc

(1)!, ~A15!

and the cubic hexagonal cross-coupling coefficientgp/3 , in
Eq. ~36!, through

mW p/352MW
1
c~pW Kc

(1)uuW K50
(2) !12MW

1
c~pW K50

(2) uuW Kc

(1)!

12MW
1
c~pW Kc

(1)uuW Kc

(2)!12MW
1
c~pW Kc

(2)uuW Kc

(1)!

12MW
1
c~pW Kc

(1)uuW A3Kc

(2) !12MW
1
c~pW A3Kc

(2) uuW Kc

(1)!,

~A16!

nW p/352NW 1~uW Kc

(1)uuW K50
(2) !12NW 1~uW K50

(2) uuW Kc

(1)!12NW 1~uW Kc

(1)uuW Kc

(2)!

12NW 1~uW Kc

(2)uuW Kc

(1)!12NW 1~uW Kc

(1)uuW A3Kc

(2) !

12NW 1~uW A3Kc

(2) uuW Kc

(1)!16NW 2~uW Kc

(1)uuW Kc

(1)uuW Kc

(1)!, ~A17!

where the eigenfunctions of the grating in the second or
are related to the field eigenfunctions bypW K

(2)(z)

5N 0uW K
(2)(z)1NW 1@uW Kc

(1)(z)uuW Kc

(1)(z)# for modesK.

The superscriptc denotes thatMW
1 has to be taken with

G5Gc coming from the expansion ine, which in this case
readsMW

15MW
1
c1eMW

1
(1)1•••.

APPENDIX B: RELAXATION-TYPE
BEAM-PROPAGATION METHOD

We briefly outline the numerical-integration scheme
solve the coupled nonlinear partial differential equations~1!
and ~2! under two-point boundary conditions@Eqs. ~43!# in
the case of a photorefractive nonlinearity including stro
pump depletion. For the spatial problem in two transve
dimensions we apply a simple spectral method@55#. We con-
sider one of the two propagation equations for the lig
fields, e.g., Eq.~1a!,

~]z2 i f K 2!Ã1~z!52QÃ2~z!, ~B1!

which has already been transformed into the Fourier sp
where K25Kx

21Ky
2 . The tilde denotes the spatial Fourie

transform achieved by use of a fast-Fourier-transform al
9-18
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rithm. In Eq. ~B1!, only the dependence on the propagati
variablez is retained. The initial partial differential equatio
is thus transformed into a system of ordinary different
equations, with as many equations as there are Fourier c
ponents. In the case of a 1283128 Cartesian grid in the
transverse dimensions, the root-finding procedure o
shooting-type integration scheme is inappropriate to so
this spatially extended two-point boundary problem, and
are left with a relaxation-type integration scheme.

Equation~B1! cannot be solved exactly, because of t
convolutionQÃ2, which contains the second beam and t
grating variable. However, for an infinitesimal propagati
distancedz, we assume that the convolution term does
change appreciably, and we are faced with inhomogene
differential equations, which we formally integrate to yiel

Ã1~z1dz!5Ã1~z!exp~ i f K 2dz!

1 iQÃ2~z!
exp~ i f K 2dz!21

f K2
. ~B2!

The inverse Fourier transform then determines the field
plitudeA1(z1dz) advanced for adz step. In this manner the
first beam is propagated through the nonlinear medium. In
analogous way the second beam, subject to the mi
boundary condition, will be propagated in the backward
rection. The grating variableQ does not change during th
propagation of the light fields. This is justified by the a
sumption in our model that the temporal evolution of t
grating is much slower than the time needed by the beam
traverse the crystal. However, because of the mirror bou
ary condition, we are also forced to keep the spatial distri
tion of one of the beams fixed during the propagation of
other beam. As a consequence, we must iterate the prop
tion of the beams, alternatingly, until it converges to the
lution for a given spatial grating distribution.

Unfortunately, the integration scheme outlined so far fa
in converging when strong pump depletion is present,
the relaxation method eventually loses track of the solut
during propagation alongz. In order to overcome this nu
ch

tte
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merical difficulty, a second-order iteration procedure is n
essary. It has the form of an artificial damping added to
field equations,

Ã1
m~z1dz!5Ã1

(h50)~z1dz!2h@Ã1
m~z!2Ã1

m21~z!#.
~B3!

Herem counts the number of iterations, andÃ1
(h50) is equal

to the rhs of Eq.~B2! at an iteration stepm. The artificial
damping constanth possesses an optimal value, for whic
the least iterations are needed. In our simulationsh50.004.

The relaxation method must, of course, be supplemen
with a convergence criterion. We find that the spatial dis
bution of the light fields is sufficiently approximated, if th
transverse-beam profiles at the output faces of the cry
obey the following condition:

E uAj
m~x,y!2Aj

m21~x,y!udxdy,«E uAj
m~x,y!udxdy.

~B4!

Accurate results are obtained for«51026. This integral con-
vergence criterion has been checked by a local criter
where necessary. As soon as the beam profiles have
verged, the artificial damping term in Eq.~B3! becomes neg-
ligible, ensuring that we have found a solution of Eqs.~1!.

Once convergence of the beams is achieved, we solve
~2! by advancing the grating amplitude, similar to the fie
propagation, for an infinitesimal time stepdt according to

Q~ t1dt !5Q~ t !exp~2dt/t!

1
GA1A2*

uA1u21uA2u21I d

@12exp~2dt/t!#.

~B5!

Although one can think of more sophisticated algorithms
the infinitesimal integrations alongz andt, they are the leas
time consuming, and by appropriate choices ofdz and dt
physically reasonable results are obtained. In our comp
tions both step sizes are always less than 0.05.
. E
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