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Abstract

We investigate the behavior of counterpropagating self-trapped optical beam structures in nematic liquid crystals. We treat numer-
ically a time-dependent model for the beam propagation and the director reorientation in a nematic liquid crystal, in (2 + 1) spatial
dimensions. The formation of stable solitons in a narrow threshold region of control parameters is displayed. Spatiotemporal instabilities
are observed as the input intensity, the propagation distance, and the birefringence are increased. Transverse displacement, filamentation,
and dynamical instabilities of counterpropagating beams are demonstrated.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Nematic liquid crystals (NLC) are known to exhibit
enormous optical nonlinearities, owing to large refractive
index anisotropy, coupled with the optically-induced col-
lective molecular reorientation. They behave in a fluid-like
fashion, but display long-range order that is characteristic
of crystals [1]. Thanks to nonlinear, saturable, nonlocal
and nonresonant response, the propagation of self-focused
beams [2] in NLC has been the subject of considerable
interest in recent years, from both experimental [3,4] and
theoretical points of view [5–7]. However, most of the
accounts deal with the propagation in one direction. The
only study of counterpropagating (CP) beams in NLC that
we are aware of, was reported in [8], and it deals with an
experimental observation of waveguiding due to nonlocal
thermal nonlinearity.

We investigate the behavior of CP self-focused beams,
both in time and in three spatial dimensions, using an
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appropriately developed theoretical model and a numerical
procedure based on the beam propagation method. We
find that solitons exist in a narrow region of beam intensi-
ties, and at lower values than in the case of copropagating
beams [5]. Below this region the beams diffract, above the
beams display dynamical and even chaotic behavior. A
new feature here is that for higher intensities a transversal
motion of beams (transverse undulating displacement) is
observed. We also consider the propagation of broader
CP Gaussian beams, which offers opportunities for observ-
ing a complex pattern-forming dynamical behavior. The
propagation and interactions of more complicated beam
structures, such as optical vortices, are also studied.
2. The model

The unique property of NLC is their ability to change
optical properties under the action of an external electric
field, which enables the macroscopic reorientation of the
director h of NLC. The evolution of slowly-varying beam
envelopes A and B, linearly polarized along x axis and
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propagating along z axis, is well described by the following
paraxial wave equations [9]:
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where A and B are the forward and backward propagating
beam envelopes, k = k0n0 is the wave vector in the medium
and ea ¼ n2

e � n2
0 is the birefringence of the medium. The

rest distribution angle hrest in the presence of a low-fre-
quency electric field is modeled by [9]
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with h0(V) being the orientation distribution due to the ap-
plied voltage far from the input interface. hin is the director
orientation at the boundaries z = 0 and z = L, where L is
the propagation distance and �z is the relaxation distance.
The temporal evolution of the angle of reorientation is gi-
ven by the diffusion equation [1,7]
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where c is the viscous coefficient and K is Frank’s elastic
constant. Here h is the overall tilt angle, owing to both
the light and the voltage influence. Using the rescaling
z ¼ zkx2

0, x = xx0, y = yx0, and t = ts, we transform the
equations into a dimensionless form:
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where s is the relaxation time and x0 is the transverse scal-
ing length. Eqs. (5)–(7) form the basis of our model. By
solving these equations we will be describing the propaga-
tion of beams in both space and time. We develop a novel
numerical procedure, based on FFT, utilizing our prior
experience in treating beam propagation in nematic liquid
crystals [5].
Fig. 1. Beam propagation, shown for one beam in the (y,z) plane, for
different input intensities: (a) I = 6 · 10+9 V2/m2, (b) I = 7 · 10+9 V2/m2,
(c) I = 8 · 10+9 V2/m2, and (d) I = 9 · 10+10 V2/m2. In (c) the beam
intensity is also shown in the (x,y) plane. For all simulations
FWHM = 4 lm, L = 0.5 mm, and ea = 0.5.
3. Results and discussion

Numerical studies of partial differential equations
describing the beam propagation in electrically biased
plane-oriented NLC are performed in different conditions
and for a variety of beam configurations. The propagation
of CP narrow and broad Gaussian beams, as well as of CP
vortices is investigated. All the pictures in the transverse
(x,y) plane are presented at the exit face of the crystal
(z = L), and all the pictures in the (y,z) plane are at the
x = 0 plane (in the middle of the crystal). All the pictures
are presented for one beam (the forward) only. In all fig-
ures the times are indicated, except when the steady-state
is reached.

In all the simulations the following data are kept con-
stant: the diffraction length Ld ¼ kx2

0 ¼ 79 lm, the propaga-
tion distance L = 6.3Ld = 0.5 mm, the transverse scaling
length x0 = 2 lm, the laser wavelength k = 514 nm, the
relaxation distance �z ¼ 40 lm, the elastic constant
K = 0.7 · 10�11 N, the viscous coefficient c = 0.08 kg/ms,
the ordinary refractive index n0 = 1.53, the director orienta-
tion at the boundary hin = p/2, the orientation distribution
h0 = p/4, the birefringence ea ¼ 0:5. All of these data are
consistent with the values reported in the experimental
investigations [10,11].

First we consider the behavior of CP Gaussian beams in
NLC, by increasing the beam intensity. The effect of the
input intensity variation on the CP Gaussian beam propa-
gation is presented in Fig. 1. For smaller intensities
(Fig. 1a) self-focusing is too weak to keep the beam tightly
focused, so it can not pass through unchanged, as a spatial
soliton. By increasing the beam intensity (Fig. 1b) at one
point stable solitonic propagation is achieved. For still
higher intensities we observe transversal motion of the
beam, in the form of one (Fig. 1c), or two consecutive
(Fig. 2) jumps, resembling beam undulations. For further
increase of the intensity we see unstable dynamical behav-
ior of beams (Fig. 1d).

The displayed displacements in CP geometry have no
counterparts in the copropagating (CO) geometry [5]. For
narrow CP beams (4 lm) the intensity needed for soliton
existence (to pass through the medium without diffraction)
is about three times lower than in the CO case [5]. The same
conclusion holds for the broader beams, with input
FWHM = 20 lm (Fig. 3). In Fig. 3, we compare the behav-
ior of CO and CP cases. As expected, similar behavior is
seen, but it occurs at different input beam intensities. By
increasing the beam intensity (the first row) we achieve sta-
ble propagation, i.e., solitonic propagation in both cases.
At higher intensities we observe different kinds of instabil-



Fig. 2. Beam propagation, shown for one beam in the (y,z) plane (the first
column) and in the (x,y) plane (the second column), at different times.
Parameters: I = 1 · 10+10 V2/m2, FWHM = 4 lm, L = 0.5 mm, and
ea = 0.5.

Fig. 3. Comparison between copropagating (the first column) and
counterpropagating (the second column) beams in NLC, for different
input intensities, indicated in the figures. For all the simulations input
FWHM = 20 lm, L = 0.5 mm, and ea = 0.5.

Fig. 4. Intensity distributions at the output face of the crystal for two
values of intensities: I = 1 · 10+9 V2/m2 (the first column) and
I = 7 · 10+9 V2/m2 (the second column), for different input FWHM of
beams (indicated in each figure). In all simulations L = 0.5 mm and
ea = 0.5.
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ities: soliton breathing (the second row), stable filamenta-
tion (the third and fourth rows), and dynamical instabilities
(the fifth row).
Next we consider the behavior of broader CP Gaussian
beams in NLC (Fig. 4). We utilize broader Gaussian beams
in numerical simulations, in order to display modulational
instabilities and pattern formation of broader CP beams.
For two different values of the input beam intensity we
vary the input FWHM of Gaussian beams. By increasing
FWHM, we get more regular patterns following an irregu-
lar dynamical behavior, unlike the case of CP broad Gaus-
sians in photorefractive crystals [12]. There one sees
ordered patterns first, which become increasingly irregular.
This behavior is the consequence of the long-range order
that is characteristic of NLC, in contrast to the local inter-
action, characteristic of the isotropic photorefractive med-
ium. Another feature of broad CP beams in NLC is a
relatively long time needed to achieve steady-state.

Besides varying beam parameters, we also vary the bire-
fringence (ea), which characterizes the medium (Fig. 5). In
Fig. 5, we show the propagation for ea = 0.8. One can see
that for different input intensities the instabilities develop
similarly to the case ea = 0.5 considered in Fig. 1. The val-
ues of intensity where the stable soliton propagation is
observed are different for the two cases. For higher ea this



Fig. 5. Intensity distributions for ea = 0.8 and for different input inten-
sities: (a) I = 2 · 10+9 V2/m2, (b) I = 2.7 · 10+9 V2/m2, (c) I = 3 · 10+9 V2/
m2, and (d) I = 7 · 10+9 V2/m2. In all simulations FWHM = 4 lm and
L = 0.5 mm.

Fig. 6. CP vortices interaction for different input FWHM: 8 lm (the first
column) and 23 lm (the second column), and for different intensities. The
first row: stable vortex propagation. The second row: filamentation. The
third row: dynamic instabilities. Insets depict transverse intensity distri-
butions. In all simulations L = 0.5 mm and ea = 0.5.

1216 A.I. Strinić et al. / Optical Materials 30 (2008) 1213–1216
value is smaller (in the case ea = 0.8 the intensity where sta-
ble soliton appears is 2.7 · 10+9 V2/m2, whereas for
ea = 0.5 the soliton appears at I = 7 · 10+9 V2/m2).

Finally, we consider the interaction of CP vortices with
opposite topological charges (±1) in NLC. The input beam
intensities are varied for two values of the input FWHM
(Fig. 6). We find stable vortex propagation for lower inten-
sities (the first row), as well as standing waves in the form
of dipoles and quadrupoles for higher intensities (the sec-
ond row). By further increasing the input beam intensities,
an irregular behavior is observed (the third row).
4. Conclusion

We investigated numerically the behavior of CP self-
focused beam structures in NLC. We demonstrated differ-
ent nontrivial and novel properties caused by the nonlocal
nature of the nonlinear response of NLC. For narrow CP
Gaussian beams we discover transverse motion of the
beams, as well as filamentation and irregular dynamics.
In the case of broader Gaussian beams, by increasing
FWHM of input beams, regular patterns after an irregular
dynamical behavior are displayed. For CP vortices a stable
vortex propagation, standing waves and irregular behavior
are observed, depending of the beam parameters.
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