
A...ianJournalof Physics Vol15,No.4, (2006)283-293

Counterpropagating beams in photo refractive crystals and
optically induced photonic lattices

M Belic', M Petrovic2, D Jovic2,A Strinic2,D Arsenovic2,S Prvanovic2and N Petrovic'
ITexasA & M Universityat QatQl;POBox 5825. Doha. Qatar

}Institute of Physics. POBox 57. //001 Belgrade.Serbia
-.-..-.----

A comprehensive numerical study of counterpropagating incoherent beams in isotropic photorefractive crystals

and optically induced photonic lattices in such crystals is carried out. A local model with saturable Kerr-like

nonlinearity is adopted for the photorefractive media. with an optically generated two-dimensional photonic lattice
written within the crystal. Different head-on incident beam structures are considered, such as Gaussians, dipoles,

and vortices. We review some of our earlier work and present novel results on the dynamical behavior of

counterpropagating beams in a finite hexagonal photonic lattice. «:>Anita Publications. All rights reserved.- - .- --...-..

I Introduction

Self-trapped beams of light propagating without change in a diffractive nonlinear medium, better
known as spatial solitons, have become much investigated objects in nonlinear optics [1-3]. Of considerable
importance in all-optical information processing, they come in a variety of forms - as bullets. screening,
quadratic, photovoltaic, and lattice solitons, or as bright, dark, and grey [2]. They are generated in dill-erent
media and by different nonlinear mechanisms,but the self-focusing effect, produced by light-induced changes
in the medium's index of refraction, appears as the common thread in all mechanisms. Self-focusing in
photorefractive (PR) crystals is achieved through the generation of the spacecharge'field, which is causedby
the photo-induced redistribution of charges that modifies the index of refraction. Application of an external
DC electric field acrossthe crystal and an additional uniform illumination turn out to be necessaryfor a more
effective soliton formation process. '

An additional interest in the propagation and interactions of self-focused light is generated when
photonic lattices are imbedded in PR crystals, giving rise to the discrete diffraction and offering intriguing
waveguiding possibilities [3]. Periodic two-dimensional (2D) arrays of optically induced waveguidesallowed
for the observation of novel self-trapped optical structures- the so-called discrete or lattice solitons. including
the discrete vortex solitons [4]. Of special concern are the modes connected with a defcct cmbedded in a

perfect infinite or finite lattice [5]. An especially interesting geometry from the applications point of view is
the photonic crystal fiber (PCF), in which a finite hexagonal lattice of holes is infused into asilica fiber. with
the central hole absent [6]. Such a 2D PCF with a central defect, also referred to asthe "holey tiber", offers
a different scenario of waveguiding from the perfectly periodic infinite PC with dielectric rods in that it

displays huge refractive index step, that the light is pinned to the defect, and that no photonic band gap is
neededto support the localized 2D solitonic waves.

So far the formation and interactions of spatial solitons and vortices have been studied mostly in the

copropagationgeometry, with a few exceptions [7-11]. In thesereferencesthe counterpropagating (CP) solitons
were considered theoretically in one transverse dimension (I D), in Kerr and local PR media, and in the
steady state. Nowhere in the literature could we find a reference to CP lattice solitons or vortices. In Refs.
[12-14] we studied numerically 2D CP vector solitons and displayed some novel dynamical beamstructures
in PR crystals. Some of those results are reproduced here. In addition, we introduce 2D CP latticc sollions
and vortices, and present some of their interesting features.

Also, we compare our numerical simulations with the experimental evidence of2D CP vector solitons
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and other self-trappedoptical structures in PR crystals [15-17],and present the splitup transition and dynamical
instabilities of such structures. We consider the propagation of various CP beam structures in PR crystals,
such as the dipole-dipole and vortex-vortex beam arrangements [18]. To validate our numerical algorithm
and compare it with our linear stability analysis (LSA) [17], we utilize broader hyper-Gaussian beams in
numerical simulations, in order to display ordinary modulational instabilities (MI) and pattern formation of
CP beams [19], in contraposition to the splitup transition. Concerning CP lattice solitons, we display stable
transverse splitup transitions of different kinds, as well as dynamical symmetry-broken splitup transitions,
where no definitive patterns are visible. We demonstrate that CP vortices generally break up into filaments
that are pinned at or in-between lattice sites, but also that their stability can be enhanced in the presence of
lattice beams.

2 The model

To understand the behavior of CP vector solitons we formulated a time-dependent model for the
formation of self-trapped CP optical beams [12], based on the theory of PR effect. The model consists of
wave equations in the paraxial approximation for the propagation ofCP beams and a relaxation equation for
the generation of the space charge field in the PR crystal, in the isotropic approximation. The model equations
in the computational space are of the form:

iazF = -!1F + rEF , ( I)

I
~E+E=-I'WI 1+

(2)

where F and B are the forward and the backward propagating beam envelopes, d is the transverse Laplacian,
is the dimensionless coupling constant, and Ethe homogenous part of the space charge field. The relaxation
time of the crystal t also depends on th'e total intensity, t = triO +1). The quantity 1 = F'2+ BI2 is the laser
light intensity, measured in units of the background intensity. A scaling xlXIl ~ x, ylxo ~ y, zlLI) ~ z, is
utilized in writing the propagation equations, where XIIis the typical FWHM beam waist and L,) is the diffraction
length. The assumption, appropriate to the experimental conditions utilized, is that the incoherent
counterpro'pagating components interact only through the intensity-dependent space charge field. To make
matters simple, we did not account for the temperature (diffusion) effects, although they are found to influence
the interaction of CP beams [10]. In the experiment [15-17] these effects were compensated by focusing the
input B beam at the place of the exit and in the direction of the output F beam. When the propagation in
photonic lattices is considered, Eq. (2) is modified, to include the transverse intensity distribution of the

optically induced lattice array Ig :

1+1
zf} E+E=- g

I I+I+Ig ,

For the lattice array we choose a fixed hexagonal arrangement of beams, with variable intensities,
and with the central beam absent. Such an arrangement is reminiscent of the holey fibers [6], except that therc
are no holes here. Instead, the laser beams modulate the index of refraction. They are assumed to be degenerate
and incoherent with the forward and backward components, and of higher intensity. We also assume that the
array beams are far enough from each other, so that the interaction between them is negligible, and that the
influence of the CP beams on the lattice beams can be neglected.

(2a)

The propagation equations are solved numerically, concurrently with the temporal equations, in the
m'anner described in Ref. [15] and references cited therein. The dynamics is such that the space charge field
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Fig. I. Isosurface plots ofa CP soliton after the splitup transition. Forward propagating component is displayed in the
steady state, (a) View along the entrance face of the crystal, (b) View along the exit face of the crystal. Simulation
parameters: IF,P=IB,J'= 0.6. r = 7.17,L=5.75Lo=23 !lm,and initialbeamwidths(FWHM)are20 !lm.

builds up towards the steady state, which depends on the light distribution, which in turn is slaved to the
change inthe space charge field.As it is seen,this simpletype of dynamicsdoes not preclude a morecomplicated
dynamical behavior. Some of our numerical results are presented concurrently with the experimental results
in Figs. 1-3. It is seen that the numerics agree, at least qualitatively, with the experiment.

A more difficult problem is to provide an explanation of the nature and the cause of the transverse
splitup instability. In Refs. [12,13] we presented a simple theory of beam displacement - derived in two
independent ways - that can account for such transverse shifts. In Refs. [16, 17] we attempted to utilize the
standard theory of MI to obtain a threshold curve for the CP beams splitup that at least qualitatively agrees
with the experimental and numerical results. In doing so, we were aware of the fact that, although both are
symmetry breaking phenomena, the pattern fonning MI represents a spontaneous breaking ofthe translational
symmetry of a homogeneous state, whereas the splitup transition is the breaking ofthe rotational symmetryof
an isolated CP soliton. Thus, MI involves the appearance of transverse waves at a critical value of k,.,whereas
the splitup instability involves ajump of the peaked structure in the transverse inverse space for some value
of kc'The two values of kcmight, but need not be connected.

~~\.:~ .
-7tl2 o 7tl2

Fig. 2. Gaussian-Gaussian beam interaction: (a) Exit face ofthe crystal, experimental. (b) The corresponding numerical
simulation of the backward beam (at the exit face of the crystal), in the direct space. (c) in the inverse space.
Parameters are as in Fig. I, except for iF,p = IB,.12 = 7.5.

3 Comparison between experiment and numerics

The aim of our numerical simulations is to qualitatively capture the most prominent experimental
findings, as presented in Refs. [15-17], with the help of a simple theoretical model and a tractable numerical
method. To this end we employ an isotropic model without temperature (diffusion) effects. Although the
experiment is perfonned on an anisotropic crystal at a finite temperature, an effort is exerted to minimize the
effects of anisotropy and diffusion. Thus, the geometry of beam coupling and the use of incoherent beams
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helped reducing the differences between the isotropic and anisotropic interactions in the crystal. Also, an
attempt is made in experiment to compensate for the diffusion effects by focusing the backward input beam
at the place of exit and in the direction of the output forward beam. The end result is that our numerical
simulationscloselyresembleexperimental resultsconcerningthe stableCP solitonsand singlesplituptransitions
ofCP beams, including the size and the direction of transverse displacements. Nonetheless, the experiment
still shows the influence of the preferential (c) direction and ofthe beam bending, which was found to affect
the interaction of CP beams [10].

Both the forward and the backward components are found to deflect to the same side. Unstable
regions are reached upon increasing the thickness of the crystal and the coupling constant. in both experiment
and simulations. In addition, in numerics we also varied the intensity of input laser light. Dynamical behavior
in numerical simulations qualitatively follows that of the experimental runs. Typically output beam spots
rotate about the input beam positions, or rapidly pass throughthem. until stable displaced equilibrium positions
are found.Then they oscillate about these positions. In case no equilibrium is found, the output beams continuc
to dance about the input beams indefinitely.

b ,,:'"
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Dipole-dipole interaction. (a) Experiment, the backward beam at the exit race or the crystal. (b) The
corresponding numerical simulation. with an extra noise 01'5%added to the input beam intensity. (e)
without noise. Parameters are as in Fig. I. except for IF,f = IB,.l2= 1.3. Initial distance between
dipole partners is 40 J.lm.

Fig. 3.

Concerning the single splitup transition, we observe in our numerical simulations the behavior close
to the one in experiment. Hence, in Fig. I we present a numerical example only. It is seen that the beams bend.
elongate, and split into two. Most of the beam intensity is focused to a new transverse position. The direction
of the transverse displacement is approximately in the direction of the external field or the c axis. which is
horizontal here. When the coupling constant is increased, the transient dynamics lasts longer. to the point that
steady state is not reached over the duration of experiment. The dynamics is such that the exiting beam rotates
or rapidly passes through the input beam, or dances irregularly about it. All these dynamical phases could
qualitatively be reproduced by numerical simulation (Fig. 2). As it can be seen in Figs. 2(b) and (c), a localized
peaked structure in the direct space forms a localized peaked structure in the inverse space, and their dynamics
is correlated. In fact, one initially observes a faint ring in the inverse space and then most of the beam
intensity focuses to a point.

The next configuration investigated was the dipole-dipole vector CP soliton (Fig. 3). In the casc of
dipole-dipole CP solitons, two identical dipoles with their components out of phase are counter-propagatcd
head-on. The dipoles are aligned perpendicular to the external field, which always points in the horizontal
direction. A transverse splitup occurs again. The direction of the splitup is preferentially along the direction
of the external field, and it also depends on the added noise [Fig. 3(b)]. Only in the case when some noise is
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added to one of the beams are we able to observe skewed splitups, and achieve better agreement with the
experiment. For the case with no noise [Fig. 3(c)], in the beginning we notice oscillations along they axis,
and after a short time these oscillations are damped. Compared to the single CP soliton cases, the cases
involving dipoles are more stable and the transient dynamics last shorter.

4 Modulational instability of broad hyper-Gaussian beams

The consideration of broader hyper-Gaussian beams offers rich opportunities for observing complex

pattern-forming dynamical behavior [19, 20]. In our case, we also wanted to validate our numerical procedure,
by comparing it with the threshold theory of LSA [17]. We found good agreement between numerics and
theory in the case of wide hyper-Gaussian beams. Fig. 4 represents the modulational instability ofCP hyper-
Gaussian beams ofFWHM = 150 J.lm.After a few integration cycles, the rings in the structure appear in direct
as well as in inverse space. The structure never reaches a steady state for the duration of the integration. What
might be of interest here is that the structure undergoes a series of symmetry breaking changes, starting from
an 0(2) symmetry at t = O. At t = 80 't a D4 plane symmetry is reached, after which the final symmetry
breaking transition takes place, to C(. This last transition is apparently the analogue of the splitup transition
ofCP solitons.

Fig. 4. Modulational instability of a broad hyper-Gaussian beam. The backward component is shown at
different times (a)-(e) Direct space. (t)-O> Inverse space. The order of the hyper-Gaussian is 4.
FWHM = 150 J.lm.other parameters: r = 27.6, L = 0.5 Ln' 1F,,12=!BI.12= 3.

Fig. 5 presents two further cases ofMI, one depicting a steady-rotating hexagonal CP beam structure,
and the other an almost stationary transverse pattern of octagonal symmetry. The only difference between the
two cases is the width of incident beams, in the first case it equals 100 J.lm,and in the second 150 J.lm.All other
parameters are the same. The rotating hexagon is interesting in the sense that a quasi-stable symmetric two-
ring hexagonal structure breaks its central D6 symmetry to a C6 symmetry at about t = 50 t, and starts to
rotate. This behavior is characteristic of patterns going through a Hopfbifurcation. Also, the beams acquire
net angular momentum. which they did not possess to start with. Systems undergoing point symmetry breaking
transitions do not conserve angular momentum. An interesting feature in the octagonal pattern is that it also
contains octagonal and square patterns ofhigher order. The mixing and competition of patterns, as well as the
appearance of defects and domain-walls. are common features of pattern formation in PR media [19 J.
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Modulational instabilities ofhyper-Gaussians, resulting in a rotating hexagon (a)-(h). and a steady-stateoctagonal
pattern (i)-(p). The first and third row depict the direct space intensity distributions, the second and fourth row
the inverse space distributions. The parameters for both cases are the same. r = 16.14. L = 3Llt IF,,!" = IB,,!" =
5, the only difference being the beam widths: 100 j.1min the first, and 150 Ilm in the second case.

S Transverse instabilities and stable structures of counter-propagating vortices

Fig.5.

Concerning CP vortex beams, a general conclusion of our numerical studies is that the CP vortices
in our model can not form stable vortex structures.CLe.ring-like, with a topological defect) that propagate
indefinitely in bulk media [18]. For smaller values ofr or the propagation distance L we observe stable CP
vortices. Nevertheless, they can form very different stable filamented structures in propagating over finite
distances, corresponding to the typical photorefractive crystal thicknesses, which are of the order offew '-If
In addition, they can form different stable dynamical structures, such as stable rotating dipoles. It should be
noted that in CP geometries, the absolute stability of propagation over indefinite distance is of secondary
importance; the influence of both input faces, at any distance, must be felt equally. Hence, stable steady or
dynamical structures aris:~g over finite distances are of considerable experimental interest.

Some typical examples ofl:P vortices seen in our numerics are shown in Fig. 6, which represents the
phase diagram in the plane of control parameters. To start with, we consider single head-on input vortices
with the same topological charge of + I. For lower values ofr or L we see stable vortex propagation over the
distances of interest (a few Ln)' One can notice in the figure a narrow threshold region which separates the
stable vortices trom other structures. The shape of the threshold region follows the general rL=const. form
we derived earlier for the CP solitons, in our papers [13, 14].Above this region we see stable dipoles, tripoles
and quadrupoles, in the form of standing waves. This is another general feature in our numerical studies: CP
vortices with the same topological charge tend to formstanding waves, whereas the vortices with the opposite
charges tend to form rotating structures. For higher values ofthe parameters, we identity the following quasi-
stable situations: the transformation of a quasi-stable quadrupole into a stable tripole, transformations of
quadrupoles into quadrupoles, and a stable rotating dipole.Above the quasi-stable region, CP vortices produce
unstable structures, Le. changing structures of unrecognizable shape.
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Fig. 6. Typical behavior ofCP vortices in the parameter plane. In the two cases shown the input vortices have the same
topological charge + I, but different input intensities. Insets list the possible outcomes from vortex collisions.

The most characteristic cases from Fig. 6 are presented in Fig. 7, in the transverse plane. The first,
second and fourth columns represent a stable dipole, tripole and quadrupole, respectively. The third and fifth
columns present the quasi-stable structures, i.e. the structures that start evolving as one structure, but then
transform into another, more stable structure (quadrupole into tripole and quadrupole into quadrupole). The
first and second rows correspond to the exit face for the backward beam in the direct and inverse spaces,
respectively. The third row shows evolution of the backward beam's total angular momentum, which is
normalized to the total beam intensity. As expected, the momentum is steady as long as the beams propagate
steady, but starts to vary, in t as well as in z, as soon as the propagation becomes unstable.
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Stable dipole (first column), the stable tripole (second column), a transformation of an unstable quadrupole
into a stable tripole (third column), the stable quadrupole (fourth column) and a transformation of an unstable
quadrupole into a stable quadrupole (fifth column). Output face of the backward beam is shown in the direct
(a)-(e), and the inverse space (f)-G).The lower row (k)-(o) presents the corresponding total angular momentum.
Parameters r and L are given in the figures. The total input intensity of each beam in all cases is I.

An interesting feature, discerned from Fig. 7, is the beam structure and dynamics in the transverse
inverse space. It is seen that in the k space a dipole remains a dipole, a tripole - a tripole (although with

Fig.7.
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prominent hexagonal features), etc. This is not difficult to understand in tern15i1~ -~ -.: --- ~,.,on
of beams: a Gaussian remains a Gaussian in the inverse space, although ..I, ~ ~~ =-. ~ :r..: ~ak
intensity. Also, the temporal dynamics and the dynamics in z remain highl) correl~" :''''....l~ ~ the

b c

Fig. 8. Standing waves. Isosurface plots of (a) stable dipole. (b) stable tripole and (c) stable quadrupole The
corresponding parameters are as in Fig. 7 (a). (b) and (d). respectively. The isosurfaces at half-maximum
intensity are plotted in the direct space. with the transverse plane being vertical and the z axis horizontal.

inverse space. This is the consequence of the assumed model: the optical field is slaved to the slow changes
in the space-charge field. The dynamics of beams in both spaces is the image of the dynamics of the E field.
However, as it will be seen below, the things considerably change when one considers the propagation of
vortex beams in photonic lattices.

Fig. 8 depicts spatial isosurfaces of the stable backward beams presented in Fig. 7, taken at tiT=200
They do not change in time. One can clearly see, especially in the case of stable dipole, the spiraling of beam
arms along the z axis, which has been described previously in a number of papers treating copropagating
vortices and pairs of solitons [3]. The same phenomenon, evidently, appears in the case of CP vortices as
well. In general, and especially when the input vortices are of the opposite charge, the resulting structures
tend to rotate together [18], owing to the angular momentum inherent in such structures.

6 Counterpropagating beams in photonic lattices

An optical waveguide array embedded in a PR crystal considerably changes the behavior ofCP beams. as
compared to the wave behavior in bulk media. The continuous 0(2) rotational symmetry of the system in the
transverse plane is substituted by a discrete point symmetry,and that has bearing on the symmetry-breaking
splitup transition. Ours is an axially-invariant photonic crystal, with a planar D6symmetry and a central
defect, andthe axially-propagatingbeams undergoingsymmetry-breakingmustcomplywith thesub-symmetries

Fig. 9. Intensity distributions of the backward field at its output face in the steady state. for various f'-; -
input beams: (a) 7 11m,(b) 9 11m,(c) II 11mParameters: lattice spacing d = 28 11m,FWHM Oflu1..::~....--

11m,maximum lattice intensity 1.= 101.,.r= 19.3. L = 2L" = 8 mm. IF,r = 18,/ = 10.

...
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of the pl3-~ 5%"='~ ~ Our case the symmetry breaking usually proceeds along the D~- C I subgroup chain. In
addition.;'''e~ 0: a central defect introducesfurtherdifferences in the discrete self-focusing.as compared
to the ir.~"'Le .attice. in that the localized optical structures are helped by and pinned to the defect.

A typical example of the splitup symmetry breaking transition in our photonic lattice is presented in
Fig. 9. A relatively wide lattice is chosen. lattice spacing 28 J.1m.with relatively narrow beams of9 ~un.The
width ofCP components is varied. It is seen that the splitted component of the more narrow CP beam focused
in-between the two adjacent lattice sites. whereas that of the wider CP beam focused at the two sites. The
same tendency is noted if. instead of the component width. the coupling strength fL is increased. Such even
and odd discrete solitons are commonplace in periodic arrays of optical waveguides. The choice of the
particular pair of adjacent lattice sites among the 6 is incidental. although the direction of polarization of the
CP beams is horizontal. The situation is steady-state. however the initial transient behavior lasts longer with
the increasing fL. Initially the beamjumps transversally. then rotates and oscillates until settling intoa steady
structure accommodating the lattice's (sub) symmetry. Both CP beams execute the same dynamics. mirror-
image of each other.

The splitup transition presented in Fig. 9(c) is shown again in Fig. 10.as a three-dimensional picture
along the crystal. It clearly displays the splitup of the forward and backward beams. depicted in green and
red. into two beams that focus onto the same two adjacent hexagonal sites on both ends of the crystal. The
white rods represent the lattice beams. The green. forward. beam enters from the left. in the middle of the
central defect, and the red, backward. beam enters from the right. In the middle of the crystal they cross and
split both into two beams that focus onto two adjacent lower lattice sites.

Fig. 10. Isosurface plots at 10% of maximum intensity for the ease presented in Fig 9(c): green - forwardbeam.red-
backward beam. white - lattice beams.

Fig. 11depicts a time-changing. dynamic situation. at different moments. in which narrow centered
CP components propagate along the lattice. The parameters are the same as in Fig. 9. except for the width of
the CPcomponents. which is 5 J.1mhere. The beam structure is unstable from the beginning. with the three 1[)
discrete solitonic modes excited initially along the three main symmetry directions. The picture remains
centrally-symmetric for awhile. with a clear hexagonal symmetry. but then becomes dynamically broken to
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C1.Thereafter, the beams discretely diffract in asymmetric bursts, at irregular times, along the two of the
same 3 symmetry directions. The whole structure slowly rotates counter-clockwise.

Ii

Fig. II. Dynamics of the backward field of FWHM =5 ~m, at different times. Parameters as Fig. 9.

Fig. 12 represents head-on counterpropagation of two centered vortices. with different topological
charges, overlapping with the waveguiding lattice.The values of charges are given in the parenthesis (forward,
backward) atop each of the figures, and the width of input vortices is relatively large (26.2 !lm). Unlike the
case of CP vortices propagating in the absence of lattice, the filamented structures remain steady-state and
strongly pinned to the lattice. No rotation of the structures is discerned, either in the case of the same, or of
the opposite charges. The angular momentum of CP vortices is transferred to the massive lattice, which
remains fixed. The filaments of low-order (I, :i:I) vortices focus onto the first-order lattice sites, whereas the
filaments ofhigher-order vortices mostly focus in-between the higher-order lattice sites. The size of discrete-
diffracted structures increases with the topological charge,however the phase distribution among the filaments
reveals the typical vortex linear increase of phase, and branch-cut lines. There is practically no difference
between the discrete (I, :i:I) vortices, and only slight changes in the higher-order vortices. Note the well-
preserved vortex at the central defect of the (I, :i:I) structure. Stable elementary vortices could not be observed
in the case without lattice, at such high values of the coupling strength rL. The plane symmetry of all these
structures is C6.

I
Fig. 12. Intensity (upper row) and phase (lower row) distributions ofthe backward field at its output face in the steady

state, for different topological charges, recorded on the top of each figure. Parameters are as in Fig 9. input
FWHM of vortices is 26.2 ~m.

7 Conclusions

In summary,we report on the various aspects of counterpropagationof self-trapped beams in isotropic
local saturable photoretTactive media, including the presence of an optically-induced photonic lattice. We
present some experimental data on the three-dimensional counterpropagating spatial vector solitons andon
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the dipole-dipole interacting beams. A peculiar dynamic behavior of CP solitons is observed. in that the
counterpropagating components suddenly change their transverse positions, and from an attracting interaction
switch to repelling. Previously stable equilibrium becomes a limit cycle, the behavior characteristic of a Hopf
bifurcation happening in the system. Utilizing a simple model we explain this behavior as a spontaneous
symmetry-breaking first-order phase transition. We also observe rich dynamics of the three-dimensional
counterpropagating solitons and vortices, and formulate a theory capable of capturing such dynamics. We
obtain good agreement between the numerical simulations and experimental results. A few examples of the
standard MI of broad CP beams are also presented, in order to validate our numerical algorithm and veritY
our results concerning the threshold behavior. Finally, we display the axial counter-propagation of solitonic
beams and vortices in an optical lattice with a central waveguiding defect. Although sharing some common
features with the counterpropagation in the absence of lattice, such as the splitup transition, the discrete
diffraction brings novel moments into the picture, such as the appearance of discrete solitons, the discrete
symmetry breaking, and pinning to the central defect. In the case of CP vortices one also observes strong
pinning to the lattice, improved stability of the central basic vortex. and the absence of clear rotation of
vortex filaments.
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