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2 and W. Królikowski
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Abstract. – A novel analytical description of the nonlocal anisotropic space charge field,
induced by (2 + 1)D localized light beams in photorefractive crystals, is introduced. Closed-
form expressions for the space-charge field induced by circularly symmetric beams are obtained.
Also, on the basis of our formulation, numerical simulations of the beam dynamics are performed
and compared with those corresponding to a local modeling of the space-charge field.

Photorefractivity is an optical nonlinearity occurring at low light intensity levels that of-
fers an excellent scenario for the investigation of a diversity of nonlinear physical phenomena.
Among these, the study of propagation of self-focused optical beams and spatial solitons in
photorefractive (PR) crystals has attracted an intense research effort over the last decade [1].
At variance with nonlinearities based on electronic polarizability, such as the Kerr nonlin-
earity, that lead to local nonlinear refractive index variations ∆n(I) dependent on the light
intensity I, the PR nonlinearity exhibits a much more complicated dependence on I because
it involves a light-induced charge transport mechanism which is characterized by both spatial
and temporal nonlocalities. This transport mechanism gives rise to the development of a
space-charge field Esc that, through the electro-optic effect, produces the nonlinear refractive
index change ∆n(I).

From a theoretical point of view, the complexity of the PR effect makes the description of
nonlinear beam propagation rather challenging, especially in more than one spatial dimension
(1D). Although a general theoretical framework, initially developed by Kukhtharev et al. [2],
is available to deal with PR phenomena, even in its time-independent version it involves the
nontrivial and generally formidable interplay between a transverse electrostatic problem and
a coupled parabolic optical wave equation. When the drift mechanism is the most important
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contribution to charge transport, one can provide a relatively simple and yet effective local de-
scription (disregarding small nonlocal effects) in the 1D geometry of the space-charge field [3,4]:

Esc = E0
1

1 + I
, (1)

where I is the total light intensity of the propagating beam (in units of the saturation or
background intensity) and E0 is the transverse dc electric field applied to the PR crystal.
Equation (1) displays one of the most important features of the PR effect: saturation. This is
a property of Esc that occurs in higher dimensions as well, and this fact has been exploited in
a number of recent works dealing with (2 + 1)D spatial screening solitons [5] by using a local
model for Esc of the form given by (1). Under certain conditions, such a representation con-
stitutes a convenient approximation that allows the application of the results obtained for the
conventional saturable local response, for which much information is available [6]. However,
higher dimensionality introduces one key ingredient: anisotropy. In addition, the fact that
nonlocality becomes much more important than in 1D, requires that both, anisotropy and
nonlocality, be taken into account in order to predict most of the relevant features of beam
propagation in PR crystals, as revealed in a number of works [7–10]. An illustrative example
is the nonexistence of stable localized optical vortex solitons (i.e. finite-size self-guided beams
with an internal vorticity and a phase dislocation) in PR media. Experimental results show
that they experience an immediate transverse instability during propagation, whereas in purely
local saturable self-focusing media much longer distances are required for their breakup.

The complete description of the PR response in more than 1D has been obtained only in
limited cases through numerical calculations. The purpose of the present paper is to develop
a satisfactory analytical 2D formulation of the PR nonlinearity, including both local and non-
local anisotropic contributions, that would allow for an adequate analysis of the light-induced
space-charge field generated by localized beams and spatial solitons. The results obtained are
valid for light intensities up to the moderate saturation regime (I � 1), which is the most
relevant regime for the propagation of PR spatial solitons [8]. The expression found for the 2D
light-induced space-charge field can be split into local and nonlocal contributions. The local
part exhibits a new intensity dependence that accounts for the saturable behavior and con-
siderably improves on the commonly used expression given by eq. (1). Moreover, closed-form
solutions are obtained for the very important case of circularly symmetric localized beams.
Also, to illustrate the validity of our approach, we have used the expression obtained for
the 2D light-induced space-charge field and performed numerical simulations of the nonlinear
beam propagation for bright rings and vortices showing a remarkable agreement with the
experimental results found in the literature.

General model. – Our analysis starts from the standard Kukhtarev formulation [2] de-
scribing the PR effect. In the steady state, the material equations are given by

S(1 + I)
(
ND −N+

D

) − γrNeN
+
D = 0, (2a)

−ε0εr∇2
⊥φ = q

(
N+

D −NA −Ne

)
, (2b)

∇⊥ · j = 0. (2c)

Here ND, N+
D , Ne, and NA represent the density of donors, ionized donors, free electrons,

and acceptors, respectively, S and γr are the photoexcitation and recombination constants,
ε0εr the scalar dielectric constant of the material, q the elementary charge, j = µqNe(E0 −
∇⊥φ) +µkBT∇⊥Ne the current density, µ the electron mobility, kB Boltzmann’s constant, T
the absolute temperature, and ∇⊥ the gradient in the transverse (x, y)-plane.
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The electrostatic potential φ gives rise to the screened space-charge field, Esc = E0−∇⊥φ.
To find an equation for φ, one substitutes the expression for Ne from eq. (2a) into eq. (2c):

∇2
⊥φ+ ∇⊥ ln(1 + I) · ∇φ− E0∂x ln(1 + I) =

kBT

q

{
∇2

⊥ ln(1 + I) +
[∇⊥ ln(1 + I)

]2}
, (3)

where it has been assumed that N+
D ≈ NA � Ne (possible trap saturation effects are ne-

glected [11]), and that E0 is applied along the x-axis. Equation (3) has already been used
in numerical studies of (2 + 1)D propagation of solitons [9] and it has shown a remarkable
agreement with experiments [8, 10]. It is interesting to note that it can be solved exactly in
the 1D case (x coordinate only). The solution is given by

Esc(x) = E0
1 + I∞
1 + I

− kBT

q

d ln(1 + I)
dx

, (4)

where I∞ denotes the intensity when |x| → ∞. Equation (4) consists of the above-mentioned
saturable intensity dependence term, and a diffusion contribution, which is responsible for the
self-bending of the beam.

In the 2D case, eq. (3) cannot be solved in closed form. Let us introduce a transformation
of the potential,

φ(x, y) = E0
u(x, y)√

1 + I
+
kBT

q
ln(1 + I), (5)

which brings eq. (3) to the canonical elliptic form that is more analytically amenable:

∇2
⊥u−

{
∇2

⊥ ln
√

1 + I +
[
∇⊥ ln

√
1 + I

]2
}
u = 2∂x

√
1 + I . (6)

Owing to the transformation (5), the contribution of the second term on the left-hand
side of eq. (6) has decreased relative to the other two, as compared to eq. (3). Also, the fact
that |u(x, y)| < 1 for all I(x, y) causes the second term on the left-hand side to be small in
the case of beams localized in the two transverse directions. In addition, since typical soliton
solutions and localized beams of nonlinear propagation equations have exponentially decaying
asymptotics at infinity, a good approximation to the solution of eq. (6) can be obtained by
neglecting the second term on the left-hand side. The validity of this approximation (which
can be shown rigorously by discretizing eq. (6)) will be confirmed a posteriori by comparing
the found analytical solution for Esc(x, y) to the corresponding full numerical solution obtained
from eq. (6), for several representative beam profiles. In particular, such an approximation
yields an excellent agreement in the important case of nearly radially symmetric beams. Hence,
we restrict ourselves to solving the following Poisson’s equation:

∇2
⊥u = 2∂x

√
1 + I (7)

in terms of the 2D Green’s function:

u(x, y) =
1
π

∫ ∞

−∞

∫ ∞

−∞

[
∂

∂ξ

√
1 + I(ξ, η)

]
ln

√
(x− ξ)2 + (y − η)2 dξ dη. (8)

By introducing polar coordinates,

ρ cos θ = ξ − x, ρ sin θ = η − y, (9)
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Fig. 1 – Space-charge field induced by an elliptic (a) and (b), two circular (c) and (d), and one circular
(e)-(h) Gaussian beams; (a), (c), (e), and (g) along x-axis, (b), (d), (f), and (h) along y-axis. (a) and
(b) correspond to wy/wx = 1.5 and peak intensity I = 3; (c) and (d) to peak intensity I = 1 and
d = 2w; (e) and (f) to I0 = 1, whereas (g) and (h) to I0 = 3 (with I∞ = 0). Full numerical solutions
are represented by the dotted lines. In (a)-(d) solid lines correspond to eq. (11). In (e)-(h) the solid
line corresponds to eq. (13), whereas the dashed line corresponds to eq. (4). Note that in (e)-(h) the
dotted and solid lines are almost indistinguishable.

eq. (8) can be integrated by parts, to yield

u(x, y) = − 1
π

∫ ∞

0

∫ 2π

0

cos θ
√

1 + I(x+ ρ cos θ, y + ρ sin θ) dρdθ. (10)

Combining eqs. (5) and (10), we finally obtain the x-component of the space-charge field:

Esc(x, y) = −kBT
q
∂x ln (1 + I) + E0

{√
1 + I∞
1 + I

×

×
[
1 +

1
π

∫ ∞

0

∫ 2π

0

cos 2θ
ρ

√
1 + I(x+ ρ cos θ, y + ρ sin θ) dρdθ

]
−

− ∂x ln (1 + I)
2π

√
1 + I

∫ ∞

0

∫ 2π

0

cos θ
√

1 + I(x+ ρ cos θ, y + ρ sin θ) dρdθ
}
, (11)

where I∞ denotes the intensity when |x|, |y| → ∞. Expression (11) includes both the local
and nonlocal contributions. Aside from the diffusion term (henceforth we disregard this term),
the two integrals in eq. (11) represent both, nonlocality and anisotropy of the space-charge
field. Figures 1(a)-(d) depict a comparison of the space-charge fields calculated from eq. (11)
and the corresponding numerical solution obtained from the complete eq. (6), for an elliptic
Gaussian beam of widths wx and wy along the x and y axes, respectively (figs. 1(a), (b)); and
two circular Gaussian beams of width w along the x-axis at a distance d = 2w (figs. 1(c), (d)).

Circularly symmetric beams. – For radially symmetric beams (I = I(r)), eq. (11) can be
further simplified and yields (leaving aside the diffusion contribution)

Esc(r, ϕ) = E0

√
1 + I∞
1 + I

{
2 cos2 ϕ− cos 2ϕ

√
1 + I

1 + I∞
−

− 2
r2

[
cos 2ϕ+ r cos2 ϕ

d ln
√

1 + I
dr

] ∫ r

0

ρ

[
1 −

√
1 + I(ρ)
1 + I∞

]
dρ

}
. (12)
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Notice that Esc(0, ϕ) = E0

√
(1 + I∞)/(1 + I(0)), meaning that the space-charge field at the

center of the beam is purely local. There are some other interesting features of Esc(r, ϕ);
owing to the anisotropy (ϕ-dependence), along the direction of ϕ = π/4, Esc(r, π/4) exhibits
an almost local behavior. Also, for the case of bright beams (I∞ = 0) of width w having
I � 1, and when r � w, Esc(r, ϕ) � E0(1 + P cos 2ϕ/2πr2), where P = 2π

∫ ∞
0
ρI(ρ)dρ is the

power of the beam. This form of the space-charge field leads to a refractive index change that
resembles the Snyder and Mitchell model of high nonlocality created by circular solitons [12],
and suggests that the interaction between PR solitons, for large distances, is of dipolar nature.

Using eq. (12) it is possible to obtain closed-form formulas for several beam profiles (either
bright or dark). The most simple one corresponds to the case of a cylindrical light rod of
radius R with I(r) = I0 for r < R and I(r) = I∞ for r > R. For such a profile, it is
straightforward to find the expression of Esc(r, ϕ) from eq. (12). We give the result for a grey
Gaussian beam IG(r) = I∞ + I0 exp[−2r2/w2] (bright and dark Gaussian beams correspond
to the cases where I∞ = 0 and I0 = −I∞, respectively):

Esc(r, ϕ) = E0

√
1+I∞
1+IG

{
2 cos2 ϕ− cos 2ϕ

√
1+IG
1+I∞

+
w2

r2

[
cos 2ϕ+r cos2 ϕ

d ln
√

1+IG
dr

]
×

×
[√

1 + I0 + I∞ −√
1 + IG√

1 + I∞
+ ln

( √
1 + I∞ +

√
1 + IG√

1 + I∞ +
√

1 + I0 + I∞

)]}
. (13)

Figures 1(e)-(h) show a comparison of the space-charge fields induced by bright Gaussian
beams as calculated from eqs. (4), (13), and the full numerical solution obtained from eq. (6).

As shown above, at the central part of the beam, where the induced change in the space-
charge field is the largest, the contribution of the two integrals in (11) is small for nearly
radially symmetric beams. Then, within a local approximation to describe Esc, one can use

Esc(x, y) = E0

√
1 + I∞
1 + I

. (14)

This square-root intensity dependence represents accurately the most relevant contribution of
the space-charge field and constitutes an improved model to be used for describing the propa-
gation of (2+1)D spatial screening solitons in comparison to the straightforward generalization
of the 1D formula used by many authors. Interestingly enough, this type of square-root inten-
sity dependence has appeared as a saturable model for the light-induced refractive index in
the context of several (1+1)D nonlinear wave propagation problems. Representative examples
are soliton propagation in plasmas [13] and strontium barium niobate waveguides [14].

It is important to emphasize that both expressions (11) and (14), at variance with the
analytical approach discussed by Zozulya et al. [8] for elliptical beams, are not restricted to
low saturation intensities (I � 1). For strongly elongated beams (i.e. those for which the
ratio wy/wx is either � 1 or � 1) the deviation between the exact numerical solution of Esc

and eq. (11) tends to increase whereas the 1D solution given by (4) is progressively recovered.
Therefore, one can consider eq. (11) as an excellent approximation to the space-charge field
induced by (2 + 1)D localized beams, up to the moderate saturation regime (I � 1).

Nonlinear beam propagation. – To illustrate the predictions on nonlinear beam propa-
gation of the different models for the space-charge field given above, we launch several initial
beams into the crystal and compare the influence of local and nonlocal anisotropic models.
Two local models are utilized, the inverse intensity formula, eq. (4), and the square root for-
mula, eq. (14). For the nonlocal models we use both the full solution obtained from eq. (6)
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Input (d) 1 mm 2 mm 3 mm 4 mm

Input (c) 1 mm 2 mm 3 mm 4 mm

Input (b) 1 mm 2 mm 3 mm 4 mm

Input (a) 1 mm 2 mm 3 mm 4 mm

Input (d) 1 mm 2 mm

Input (c) 1 mm 2 mm

Input (b) 1 mm 2 mm

Input (a) 1 mm 2 mm

Fig. 2 – Intensity contour profiles of input bright rings (left) and charge +1 vortices (right), for
different propagation distances. The rows (a) correspond to the full numerical case, rows (b) to
the case where use of eq. (11) was made, whereas rows (c) and (d) correspond to the local cases
represented by eqs. (4) and (14), respectively. The input peak intensity of both beams is I � 1. Also,
we used E0 = 3.6 kVcm

−1. The x and y axes are oriented along the horizontal and vertical directions
of each of the shown windows, respectively. The sides of the windows are 104µm.

and eq. (11). The slowly varying envelope A obeys the nonlinear paraxial wave equation

2ikn0∂zA+ ∇2
⊥A = −k2n4

0reffEscA, (15)

where k is the free-space wave vector, n0 the bulk refractive index, and reff is the effective com-
ponent of the electro-optic tensor. The beam propagates in the z-direction, and is polarized
along the x-direction, which is also the direction of the crystalline c-axis. The used numerical
parameters are wavelength λ = 2π/k = 532 nm, n0 = 2.35 and reff = 300 pmV−1. These
correspond to typical values in experiments with strontium barium niobate crystals [10].

Launching Gaussian beams leads to subtle differences in the profiles and similar behavior
in all the models (the local models preserve the initial beam symmetry). Thus, we choose to
launch ring and vortex-mode solitons, whose behavior is much more model dependent. The
results of our calculations are displayed in fig. 2. When the input beam is a bright ring (first
set of images), there is a strong self-focusing in all cases caused by the high applied field (E0 =
3.6 kVcm−1). However, the inverse-intensity formula gives rise to large-width oscillations of
the beam whereas in the other cases there is a quasi-stationary propagation. This example
clearly shows the advantage of using the square-root formula instead of the inverse-intensity
formula. For the case of an input vortex beam of topological charge +1 (second set of images
in fig. 2), the predictions of local and nonlocal models are quite dissimilar. At variance
with linear and self-defocusing media, where vortices are stable, in saturable self-focusing
nonlinear media vortices are always unstable against azimuthal perturbations. However, the
development of such instabilities is immediate for anisotropic models. The refractive index
distribution induces the fission and decay of the vortex into a dipole-mode soliton that partially
rotates in both cases (the dipole rotation of the full numerical model is slightly larger than
the one predicted by eq. (11)). On the other hand, neither of the two local models predict
the immediate breakup of the beam, which is caused by the anisotropy of the PR media. The
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much longer distances (∼ 50 cm) which are required to observe the vortex fission indicate that
for the propagation of beams with a topological charge the local models are not applicable.

Conclusions. – We have obtained new analytical expressions for the space-charge field
induced by (2 + 1)D localized and self-trapped optical beams in PR crystals. An accurate
description of the local and nonlocal anisotropic contributions of the space-charge field is pro-
vided. In particular, we have found an improved and closed-form representation of the space-
charge field induced by radially symmetric light beams and a novel representation for the local
contribution of the space-charge field that is more appropriate for the (2 + 1)D spatial soliton
propagation problem in PR media. Also, we have tested and compared the predictions of
the different models by simulating the complete nonlinear beam propagation problem. Apart
from their conceptual importance, the results presented in this paper may provide potential
usefulness towards nonlinear waveguide design based on (2 + 1)D PR screening solitons [15].
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[9] Belić M. R., Stepken A. and Kaiser F., Phys. Rev. Lett., 82 (1999) 544; 84 (2000) 83.
[10] Mamaev A. V., Saffman M. and Zozulya A. A., Europhys. Lett., 35 (1996) 25; Phys. Rev.

Lett., 77 (1996) 4544; Krolikowski W., Saffman M., Luther-Davies B. and Denz C.,
Phys. Rev. Lett., 80 (1998) 3240; Neshev D. et al., Opt. Lett., 26 (2001) 1185.
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