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Beam bending in photorefractive conjugators

D. Vujić
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Abstract. – Strong bending of laser beams in photorefractive conjugators is explained using
the grating action method and Fermat’s principle. A bent bidirectional optical path in the
crystal consists of a finite number of kinks formed at the double-phase conjugate interaction
regions, and straight segments in between. The device in operation strives to minimize the
optical path length and maximize the coupling between beams.

One of the fascinating sights when watching photorefractive (PR) conjugators in action is
the strong bending of focused light beams inside the crystal [1–4]. The beams can make tight
corners on a single pass through the crystal, approaching 90◦ turns. To the naked eye they
appear to curve continuously, however upon closer inspection it is discovered that the optical
paths are piecewise straight, joined by a number of elbows [1–3]. The explanations offered
thus far [2, 3, 5] are either incomplete, or rather complicated.
Beam-bending is present in most of PR oscillators, but it is especially spectacular in the

bridge conjugator [1]. In fact, the bending is essential for the operation of this device, in
that the bridge conjugator does not utilize any other means of bringing the two incoherent
input beams together, such as total internal reflections in the crystal or external mirrors
outside. There exists only another conjugator similar in this respect to the bridge, and that
is the double-phase conjugate mirror (DPCM) [6]. However, the two are different devices
in many aspects, the most obvious being that DPCM employs only one four-wave mixing
(4WM) interaction region (IR) to achieve the coupling between the incident beams, whereas
the bridge employs many. A more subtle, but physically more consequential difference is that
the oscillation transition in DPCM is like a second-order phase transition, whereas the one in
bridge is like a first-order one.
The purpose of this letter is twofold. On the one hand, we explain the operation of the

bridge conjugator, and on the other hand, we establish a paradigm for the mechanism of
self-bending of beams observed in other PR conjugators [7–9], as well as in other wave mixing
processes [4]. The paradigm is Fermat’s principle, adapted to the operation of PR conjugators.
The geometry of interest is presented in fig. 1. It is a symmetric bridge, with the crystal

c-axis pointing along the diagonal and a transverse stream of IR. Such a geometry makes
c© EDP Sciences
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Fig. 1 – Bridge conjugator with (a) 5 interaction regions, (b) 4 interaction regions.

our life easy. The notation is geared to take advantage of the symmetry, since the regions
pairwise symmetric across the diagonal are equivalent to each other. The bridges with odd
and even number of IR belong to different symmetry classes—the former possess a central
region (denoted by 1), whereas the latter have no such region. We assume the envelopes of
the mixing beams to be approximated by plane waves, and the wave coupling constant to be
real. One can then apply the grating action method [10], according to which all quantities
of interest in the wave mixing process are given in terms of one real quantity, the grating
action u:

u =
1
d

∫ d

0

Γ|Q|
I
dz . (1)

Γ stands for the coupling strength of the process (gain coefficient per unit length times the
thickness of IR), Q = A1Ā4+ Ā2A3 is the amplitude of the grating, Aj are the slowly varying
envelopes of the four interacting beams, and I is the total intensity. The bar denotes complex
conjugation.
The grating action is intimately tied with Fermat’s principle, which requires that the

optical path within the device is extremal. The optical path is the line integral of the index
of refraction over the propagation path. In a PR crystal the index of refraction contains the
contributions from the bulk n0 plus the change n1 ∼ |ΓQ|/I, coming from the grating [11].
When integrated along the propagation path, this change gives the (magnitude of) the grating
action multiplied by the thickness d of IR. Hence, the physical meaning of the grating action
is that it represents the change in the optical path within the crystal, due to the establishment
of 4WM gratings.
The grating action u is obtained from the expression [10]

(A10Ā40 + Ā2dA3d + c.c.) cot(u) = aIcoth(aΓ/2)− I10 + I2d − I3d + I40 , (2)

accommodating the four input beams at the 0 and the d side of an IR. a is a constant, to be
found from

a2I2 = 4|Q|2 + F 2 , (3)

where F = I1 + I2 − I3 − I4 is the Poynting flow through the crystal. In the case of devices
with one IR, one obtains a system of two algebraic equations. For the devices with more
than one IR, say N , one applies the same analysis to each IR (utilizing appropriate boundary



192 EUROPHYSICS LETTERS

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

-3.5

-3

-2.5

-2

Γ j

u

a) 1

2

3

4

5

6

|q|=1

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

-6

-5

-4

-3

-2

1

+2

+3
+4

+5
+6

-2-3
-4-5-6

Γ j

u

b)

|q|=5

Fig. 2 – (a) Coupling strengths Γj as functions of u, for up to 6 regions symmetric (|q| = 1) device.
(b) Same as (a), but for an asymmetric device, with |q| = 5.

conditions), and obtains a system of 2N coupled nonlinear algebraic equations. Even though
such systems are easier to handle than the original 4N wave equations, they are still difficult.
When applied to the bridge with N IR, eqs. (2) and (3) give

cosuj =
|q|2 ∏j−1

i=0 sin
2 ui +

∏N+1
i=j+1 sin

2 ui

2|q|∏N+1
i�=j | sinui|

√
1− a2

j , (4a)

1 + ajcoth
(

ajΓj

2

)
= 0 , for j = 1, ..., N, (4b)

where |q|2 = I1/I2 is the intensity ratio of incoming beams, and, by definition, u0 = uN+1 =
−π/2. Index j here enumerates the regions. Note that each region has its own coupling Γj ,
which, in general, is different from the others. By the choice of variables, each Γj varies from
−2 to −∞, and the corresponding uj varies from 0 to −π/2. The second N equations are
decoupled, and give aj in terms of Γj . Each of the remaining N equations gives uj in terms
of its own Γj and all other ui. The quantities of experimental interest are the transmissivity
and the reflectivities at both ends:

T =
N∏

i=1

sin2 ui , R = |q|2T , R′ = T/|q|2 . (5)

We are not aiming to solve these equations, but to establish the threshold and operation
conditions of the device. To this end we assume that in the steady state, and for |q| = 1,
all IR are contributing equally to the working of the device. We call this the equipartition
principle, and employ it along with the Fermat principle. It means that all uj are equal (but
Γj are unequal). Each of eqs. (4a) then defines a function Γj(u), some of which are depicted in
fig. 2a. The utility of notation introduced in fig. 1 now becomes clear. Looking into eqs. (4a),
it is seen that there exist two distinct cases of the bridge conjugator, one with an odd number
of IR, and the other with an even number. For any odd N , the equation for the central region
is always the same, and equivalent to the equation for the simple DPCM:

cosu1 =
|q|2 + 1
2|q|

√
1− a2

1 . (6)
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Likewise, the equations for the pair of ±3 regions are always the same:

cosu3σ =
|q|2σ + sin4 u3σ

2|q|σ sin2 u3σ

√
1− a2

3σ , (7)

where σ = ±1, regardless of the total number of regions. We kept the subscripts on u, to
remind us from which pairs they originate, but it should be remembered that all u’s are the
same. The sequence of regions unwinds in pairs, until N is exhausted. For N even, the
sequence starts with the pair of ±2 regions

cosu2σ =
|q|2σ + sin2 u2σ

2|q|σ| sinu2σ|
√
1− a2

2σ , (8)

and continues in pairs until all the regions are accounted for. Hence, the cases of N odd and
N even belong to two symmetry classes of the bridge conjugator (the symmetry operation
between the members of any pair is |q| → |q|−1). The classes have nothing in common,
however the device can bifurcate from one class to the other. Eliseev et al. [2] have described
in detail the bifurcation from the N = 1 to the N = 2 bridge. In our view, the genesis of a
bridge from fanning gratings does not proceed by bifurcations from the central region, but by
addition of new regions in pairs at both tails of the sequence. Each such addition requires an
increasing coupling strength, as the thresholds are increasing, and the process stops after a
finite number of steps.
The threshold values for the device are found from the graphs in fig. 2. They are the

minimum values of |Γj | at which the device with N = j regions comes into being. The
threshold values, together with the corresponding values of u, and the values of the reflectivity
at the threshold, are collected in table I. One notes that the reflectivity is not zero at the
threshold for different bridges, with the exception of the N = 1 device, which is not a bridge,
but DPCM. Hence, the bridges can be turned on only if there are some background fanning
gratings, to provide seed. The reflectivity of a bridge suddenly jumps from zero to some finite
value at the threshold. This is characteristic of first-order–like phase transitions.
It is worth mentioning that one can also approach the problem by assuming that all Γj are

the same (then uj are different). This approach was advocated by Eliseev et al. [2]. The two
procedures are equivalent for strong |Γ| and high |u|. The numbers for the equal Γ procedure
are also provided in table I. It is seen that the two procedures yield slightly different numbers
(except for the starting members of the N -odd and N -even sequences, where they are equal),
however the qualitative behavior of the device remains the same.

Table I – Values of the grating action, coupling strength, and the reflectivity at threshold, for the
bridge with different number of interaction regions, and for the two solution procedures (left side for
equal u, right side for equal Γ).

N uth Γth Rth uth Γth Rth

1 −0.0 −2.0 0.0 −0.0 −2.0 0.0
2 −0.615 −2.493 0.111 −0.615 −2.493 0.111
3 −0.815 −2.836 0.148 −0.671 −2.700 0.093
4 −0.925 −3.086 0.166 −0.692 −2.858 0.076
5 −0.998 −3.283 0.176 −0.709 −2.989 0.065
10 −1.172 −3.913 0.195 −0.743 −3.444 0.039
20 −1.291 −4.562 0.205 −0.790 −3.968 0.024
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Fig. 3 – (a) Reflectivity as a function of ΓN for |q| = 1. Numbers 1 and 10 denote the number of
regions. (b) Same as (a), but for different |q| and for 5 regions.

Figure 3a displays reflectivity as a function of the coupling strength, for different number
of regions. Each curve comes into existence after its Γ reaches the threshold value, and we
have put ΓN on the abscissa, to cover the whole physical region of Γ ≤ −2. It is seen that
the reflectivity increases as the number of regions increases, but the difference is small for
large |Γ|. The case of unequal input intensities is presented in fig. 3b. It requires a separate
discussion.
When |q| �= 1, the symmetry of the device is broken, and the degeneracy of pairs lifted.

Figure 2b depicts what happens to the coupling strengths. The pairwise symmetric regions
now procure different Γ curves, and possess different thresholds. We distinguish them by
the ± sign, where + is used for the regions upstream, towards the higher intensity pump,
and − is used for the regions downstream. It is seen that the regions downstream acquire
lower thresholds, and are easier to turn on. Conversely, the regions upstream acquire higher
thresholds, and are harder to turn on. Therefore, for a given maximum value of the coupling
strength in the crystal, more of the downstream IR will be turned on than the upstream IR.
An asymmetric device develops. Asymmetric devices develop also if the direction of the c-axis
is tilted, or if an asymmetric launching of the two beams is performed [1]. The reflectivities
of both beams for the symmetric device, as functions of the input beam ratio, are shown in
fig. 4. They look similar to the experimental curves [1], however the quantitative comparison
is difficult to establish, since the experiment is performed for a strongly asymmetric device.
The operation of the symmetric bridge proceeds as follows. After the incoherent beams are

launched, a region of overlapping fanning gratings develops, slanted toward the c-axis. Fanning
gratings scatter beams they originate from. Among the many scattered replicas of beam 1,
amplified will be the ones that eventually scatter in the direction of the phase conjugate to
beam 2, and vice versa. Such bidirectional beam pairs are supported by both input beams,
whereas other scattered beams are supported by only one input beam. There exist many
such bidirectional pairs, as one has to allow for not only the direct scattering (responsible
for DPCM), but also for higher orders of multiple scattering (responsible for various bridges).
All such pairs compete for the available energy of input beams, and in the end wins the one
that utilizes most gain and admits least losses. This is the one which, according to Fermat’s
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Fig. 4 – Phase conjugate reflectivities at both sides of the crystal, as functions of the beam ratio |q|,
for the devices with up to 4 interaction regions.

principle, minimizes the total optical path length (OPL):

OPL =
N+1∑
i=1

n0li +
N∑

i=1

|ui|di , (9)

where the first term is the sum over straight segments, and the second term represents the
contribution of the kinks, in the lowest, linear order. li are the lengths of straight path
segments joining IR, and di contain all the factors [11] of dimension length that multiply |ui|.
The interplay between the two terms decides which bridge is turned on. The first term carries
a lot of weight, but the second term dictates how many kinks there will be in the optical path.
For example, for the bifurcation from N = 1 to N = 2 device [2], the Fermat condition is

n0l3 + 2|u2|d2 ≤ n0(l1 + l2) + |u1|d1 , (10)

where l1, l2, l3 are the sides of the triangle connecting IR, l3 being the side between the two
|u2| regions. This condition is easily satisfied.
It appears that such a picture would lead to a continuously curved optical path, however

this is not the case, as the thresholds increase with the number of regions. The amount of
coupling strength within the crystal is always limited. Only those IR will be activated, whose
thresholds lie below the level of |Γ| available. The device will push towards the higher values
of |u|, as there the values of |Γ| are higher, and consequently the maximum possible number
of IR will be activated. Hence, the steady-state operation of the bridge requires that OPL
is at the minimum, but at the same time each IR operates at the maximum |uj | achievable
under such conditions. It may happen that a few competing bridges have very close OPL, in
which case the device will oscillate in time between the allowed geometries [12].
It would also appear in this picture that there is no reason for the device to depart from

the N = 1 geometry. The reflectivity attained there is the highest, the threshold is the lowest,
and there is no need for a seed. The DPCM threshold is like a second-order phase transition.
It is a plausible argument, and were it not allowed, DPCM would have never been observed.
However, it is also clear that the bridge is possible (and observed), and to see what happens
in reality, one has to account for the details of the geometry and Fermat’s principle condition.
For example, it may happen that the beams of unequal intensity are launched at such positions
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and angles, that the angle at their intersection is too large for the formation of DPCM. Then
an asymmetric bridge is clearly favored.
Finally, it should be mentioned that a plane-wave theory, such as this one, cannot be

expected to offer a complete description of the bending of beams in PR crystals. Self-bending
happens in 2WM processes [4], where there are no bidirectional paths, and in the scattering
of speckled fields [5], where it is caused by the gradient of the angular spectrum of the beam.
A more complete theory should include transverse spatial effects.
Nevertheless, we have established that important features of beam bending in PR conjuga-

tors can be explained by a simple grating action theory and Fermat’s principle. In particular,
we show that the bending of beams in the bridge conjugator results from the establishment of
a finite sequence of odd or even number of 4WM interaction regions along the optical path,
which minimize the path length and maximize the coupling between the interacting beams.
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