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Abstract

Analytical and numerical investigation of the propagation of optical beams in Kerr-like saturable photorefractive media is carried
out, utilizing a novel model for the local isotropic part of the space-charge field generated in the medium. Using a variational technique,
optimal propagation parameters for the most stable propagation of otherwise unstable single Gaussian, single vortex, and optical soliton
cluster beams are determined. Analogy between a ring of identical weakly overlapping solitons and a vortex of the same topological
charge is explored.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Progress in generating spatial optical solitons in nonlin-
ear (NL) bulk media opens the possibility of intense study
of two-dimensional (2D) interaction and self-trapping of
light beams [1]. Spatial solitons display robust nature in
interactions [2], thus a formal analogy with the atomic
physics can be established and spatial solitons can be trea-
ted as the ‘‘atoms of light.’’ Using a certain number of sim-
ple solitons (or ‘‘atoms’’) one can construct more complex
objects, multisoliton bound states (or ‘‘optical atom
clusters’’) in a homogeneous bulk NL optical medium.
Self-trapped azimuthally periodically modulated beams
(‘‘necklace beams’’) can exist in such media, exhibiting
quasi-stable expansion even in a self-focusing NL medium
[3–5]. Because of zero angular momentum they do not
manifest rotation during propagation.

The major problem in these studies is inherent instability
of beam propagation in NL self-focusing optical media [6].

Solitonic structures propagating in such media often pos-
sess internal modes and tend to develop modulational
instabilities (MI) which lead to the breakup of simple beam
arrangements into more complex ones. The idea then is to
harness these internal modes and MI to achieve more sta-
ble propagation of complex beam structures. Competition
between different optical nonlinearities is very important
for the improvement of the stability of single vortex soli-
tons and 2D and 3D soliton clusters [7–9]. The key physical
mechanism for soliton cluster stabilization is associated
with a staircase-like phase distribution that induces a net
angular momentum and leads to quasi-stable cluster rota-
tion [10–12].

It has recently been pointed out that the inclusion of
spatial nonlocality into NL propagation may arrest col-
lapse and improve the stability of light beams [13]. Non-
local response provides a mechanism for the stabilization
of solitonic clusters and azimuthally modulated vortex
beams [14]. In this paper, we explore an alternative way
to improve stability, by staying within the local approxima-
tion but using a more appropriate model for the generation
of space-charge field in homogeneous photorefractive (PR)
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crystals. These are the media of choice for the study of
quasi-stable propagation of more complex solitonic beam
structures. Generally, such structures are metastable (i.e.,
in the absence of any perturbations they propagate stably
over many diffraction lengths in a saturable medium, expe-
riencing spontaneous symmetry-breaking instability only at
the end). We are looking into ways of extending this quasi-
stable regime of propagation, by exploring improved mod-
eling of PR media. We are also looking into similarities
between rings of identical weakly overlapping solitons car-
rying orbital angular momentum and vortices of the same
topological charge.

To this end we utilize an isotropic model of PR media
with a local interaction of beams that is specifically suitable
for transverse 2D geometries. The model, developed in
[15,16], contains a more realistic expression for the PR
space-charge field, of the form:

Esc ¼ E0

1ffiffiffiffiffiffiffiffiffiffiffi
1þ I
p ; ð1Þ

where E0 is the transverse dc electric field applied to the
PR crystal, to induce the formation of the space-charge
field, and I is the total beam intensity measured in units
of the dark or background intensity. The square-root
intensity dependence represents more accurately the most
relevant isotropic contribution to the space-charge field
and constitutes an improved model to be used for describ-
ing the propagation of (2 + 1)D spatial screening solitons.
It offers more accurate results in comparison to the
straightforward generalization of the 1D formula
1/(1 + I), which is used by most authors. In addition, as
it will be seen, it leads to improved stability of propagating
complex optical structures and longer propagation
distances.

The equation for the slowly varying optical field enve-
lope E can be written in the form of the general dimension-
less nonlinear Schrödinger equation:

i
oE
oz
þ D?E þ f ðIÞE ¼ 0; ð2Þ

where D? is the transverse Laplacian and z is the propaga-
tion distance, measured in the units of the diffraction length
LD. The function f ðIÞ ¼ �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ IÞ

p
describes NL prop-

erties of the PR optical medium, and depends on the total
beam intensity ðI ¼ jEj2Þ only.

Following the standard procedure, the Lagrangian and
Hamiltonian densities of the root model are easily found

L ¼ i

2
E
oE
oz

�
� c:c:

� �
þ jr?Ej2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jEj2

q
; ð3Þ

H ¼ i

2
ðEozE� � c:c:Þ �L: ð4Þ

Hamiltonian and the action can be written as usual

H ¼ �
Z
jr?Ej2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jEj2

q� �
dxdy; ð5Þ

S ¼
Z

Ldr?: ð6Þ

We utilize these quantities in describing the propagation of
various beam structures in the medium. The procedure is to
determine optimal parameters for different beam structures
utilizing variational principles, then launch optimized
beams into the medium, and observe the subsequent
behavior.

2. Single Gaussian

We consider first a Gaussian-like solution, described by
an input ansatz:

E ¼ A expð�ðx2 þ y2Þ=2a2Þ; ð7Þ
where x and y are dimensionless coordinates in the trans-
verse plane (scaled by the typical width of beams used in
experiments) and a (the width) and A (the amplitude) are
the parameters to be optimized. Optimal values of these
parameters can be found from the principle of minimum
action.

The main quantity characterizing a spatial soliton is its
power:

P ¼
Z
jEj2dr? ¼ pa2A2; ð8Þ

which is dimensionless here, and represents an integral of
motion. The variational conditions dS/dA = dS/da = 0
for finding the parameters of a single soliton, described
by the ansatz (7), give only one relation betwen a and A:

Z 1

�1

Z 1

�1

ðx2þy2Þ
a2 � 1

h i
e�

x2þy2

a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2e�

x2þy2

a2

q dxdy � p ¼ 0; ð9Þ

so, instead of only one solution, we have an infinite number
of solutions, Fig. 1. Eq. (9) can be analytically solved only
in the small amplitude approximation (valid for a large
beam width), and we find P � pa2A2! 8p.

Gaussian-like solutions represent very stable but pulsat-
ing (breathing) solitons. Oscillations in the transverse direc-
tions are the smallest for the points on the curve, defined by
Eq. (9).

Fig. 1. Solution of Eq. (9) for the parameters of Gaussian-like solitons.
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3. Single vortex

Next, we consider a vortex-like solution, described by
the ansatz:

Eðq;uÞ ¼ Aqe�
q2

2a2 eimu; ð10Þ
where (q,u) are the polar coordinates in the transverse
plane and m is the topological charge. The beam power is
equal to

P ¼
Z
jEj2dr? ¼ pa4A2: ð11Þ

The variational conditions dS/dA = dS/da = 0 for finding
optimal parameters a and A of a single vortex soliton give
again only one equation:

Z 1

0

q2

a2
q2

a2 � 2
h i

e�
q2

a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2A2e�

q2

a2

q qdq� ð1þ m2Þ
2

¼ 0: ð12Þ

Characteristic solutions of this equation are shown in
Fig. 2, with the behavior similar to Gaussian beams. As be-
fore, Eq. (12) can be solved analytically only in the small
amplitude region (where the beam width is large), and we
find P � pa4A2! 16p(1 + m2).

Vortices oscillate during propagation in such a way that
the power (11) is always conserved. For m = 1, a single vor-
tex with the parameters above the corresponding curve of
Fig. 2 oscillates anharmonically with very small amplitude,
and disintegrates into concentric rings. A single vortex with
parameters below the curve oscillates harmonically with an
amplitude that increases with the increasing distance from
the curve, and fragments into several fundamental solitons
that fly tangentially off the ring.

For a given beam power P, a single vortex propagates in
the most stable fashion (the harmonic oscillations are the
smallest) if the parameters are determined by Eq. (12). In
this case, the vortex width a oscillates about its mean value
by about 10%. The quasi-stable propagation distance
depends on P, and above the beam power threshold, it

increases with the increasing beam power. For example, a
vortex of unit topological charge with P = 3 · 108 propa-
gates stably until 4800 LD. We define the stable propaga-
tion length as the propagation distance at which the
symmetry-breaking instabilities start to develop.

For vortices with the topological charge m = 1 it is pos-
sible to find the period of oscillations

T ¼ pffiffiffi
2
p a2

ð0Þ; ð13Þ

where a(0) = a (z = 0) is the input value of optimized a. This
relation holds only for the points on the curve given in
Fig. 2, which are to the right of the curve minimum.

4. Soliton clusters

We now consider situations where more than one beam
is launched into the crystal. We build onto the concept of
necklace beams developed in [3–6,10,11], extending it to
the root model, and in the process demonstrate that the
quasi-stable propagation distances increase for an order
of magnitude over the distances achieved in the inverse-
intensity saturable model.

In the simplest case of two coherent spatial solitons, the
interaction between them depends on the relative soliton
phase difference h: two solitons attract each other for
h = 0, and repel each other for h = p. For intermediate val-
ues of the soliton phase, energy exchange and inelastic
interaction between the solitons become the most dominant
effects. From the geometrical considerations it is clear that
the only structures suitable for balancing the phase-sensi-
tive coherent interaction between neighboring solitons
should possess a ring-like geometry. However, due to ten-
sion induced by the bending of the soliton array, this con-
figuration will be (in general) radially unstable: a ring of N

solitons will expand if the mutual interaction between the
neighboring solitons is repulsive, or otherwise collapse.
Effective centrifugal force, in the form of an additional
phase of the scalar field that twists by 2pm along the soliton
ring, can balance out the tension effect and stabilize the
ring-like soliton cluster. This leads to the cluster rotation,
with an angular velocity which depends basically on the
phase charge m.

To describe soliton clusters analytically, we consider a
coherent superposition of N solitons with the beam enve-
lopes Gn(x,y,z), n = 1,2 ..., N, propagating in a homoge-
neous bulk saturable Kerr-like medium where the total
optical field is E =

P
Gn. For a ring of identical weakly

overlapping solitons launched in-parallel, we can employ
the Gaussian ansatz for the single beam Gn [6,10]:

Gn ¼ A exp � jr� rnj2

2a2
þ ian

 !
; ð14Þ

where rn ¼ fxn; yng ¼ R cosð2pn
N Þ; R sinð2pn

N Þ
� �

defines the sol-
iton’s initial location, R is the ring radius, and
an ¼ hn ¼ 2pm

N n is the phase of the nth beam. The number
Fig. 2. Solution of Eq. (12) for the vortices with different values of the
topological charge m.
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m plays the role of a topological charge of the correspond-
ing phase dislocation associated with the ring. The quantity
h = 2pm/N is the relative phase between the two neighbor-
ing solitons in the ring.

Our aim is to propagate a ring-like configuration of N

coherently interacting solitons for as long as possible. To
this end we first determine the parameters for ring compo-
nents: the idea is to construct the most robust possible sin-
gle solitons, using the variational technique, by finding the
best propagation parameters a and A (Fig. 1). Then it is
necessary to specify the parameters which characterize
the ring: the radius R and the topological charge m. To
do so, we substitute the ansatz (14) into the relation for
the effective interaction potential U(R) (or the normalized
system’s Hamiltonian) [10]

U ¼ �
Z
jr?Ej2 þ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jEj2

q
� 1Þ

� �
dxdy; ð15Þ

and plot U as a function of R. The minimum of this func-
tion at a finite value of R (denoted here as R0) will indicate
the most stable cluster configuration against the collapse or
expansion.

In saturable Kerr media with the square-root nonlinear-
ity, for N P 4 we can see three distinct types of the interac-
tion potential U(R). Only one of them has a local minimum
at finite R, the other two types of the effective interaction
potential are attractive and repulsive. The particular case
N = 10 is shown in Fig. 3. The effective potential is always
attractive for m = 0. For 4 6 N < 8 the dynamically stable
bound states are possible for m = 1 only, while for N P 8
they exist for m = 1 and m = 2. The effective interaction
potential is always repulsive for higher values of m. The
stability of such soliton clusters during propagation is
tested numerically.

5. Numerical results

Here, we present results obtained by numerical solution
of Eq. (2). We execute a series of numerical simulations of
different N-soliton rings, using a beam propagation method
based on the fast Fourier transform technique. We find
excellent agreement between observed numerical cluster
dynamics and our analytical analysis founded on the effec-
tive-particle approach, although the numerical ring dynam-
ics tends to be more complicated.

Different interaction scenarios for a cluster of N = 10
solitons are shown in Fig. 4. The first column presents
the case with m = 0; because of the zero angular momen-
tum the cluster does not exhibit rotation during propaga-
tion. The effective interaction potential is attractive, and
the collapse and fusion through oscillations are observed.
In the second and third columns stationary bound states
are presented that correspond to the minima of the effective
interaction potential U(R) in Fig. 3, for m = 1 and m = 2.
The soliton attraction is balanced by the repulsive centrif-
ugal force, and the clusters preserve their form, while rotat-
ing, during the propagation. The cluster with m = 1
propagates longer; reasons being the larger centrifugal
force in the m = 2 case (i.e., the larger angular momentum)
and the shallower effective interaction potential. The fourth
column in Fig. 4 represents an example of soliton repul-
sion, with m = 3: although strongly overlapping in the
beginning, the single solitons preserve their individuality
during the cluster expansion.

Different rotating soliton clusters, as well as azimuthal
MI developing in these systems, are presented in Fig. 5.
As demonstrated earlier [17,18], optical solitons carrying
orbital angular momentum are unstable in propagation,
breaking into filaments, which develop into solitons, whose
number is dependent on the input angular momentum.
After a symmetry-breaking instability, the solitons fly out
tangentially from the initial ring, like free Newtonian par-
ticles. Interestingly, generally metastable clusters initially
always rotate more than one full rotation (but less than
two!), then energy exchange between solitons takes place
and the filamentation occurs, but the filaments (which
become flying solitons) rotate in the opposite direction
(Fig. 5).

As a consequence of the nonstationary behavior during
cluster propagation (such as breathing and emitting radia-
tion), cluster’s radius is not a constant quantity. To inves-
tigate cluster oscillations, we monitor the cluster’s mean
radius hRi, given by the formula:

hRðzÞi ¼ 1

P

Z Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
jEj2dxdy: ð16Þ

The evolution of cluster’s mean radius hRi as a function of
the propagation distance is shown in Fig. 6. Input cluster
radius R0 = 4.25 corresponds to the minimum of the effec-
tive interaction potential U(R) (Eq. (15)), for a cluster of
N = 8 solitons and with the topological charge m = 1. As
it can be seen in Fig. 6, the cluster with the input radius

Fig. 3. Effective interaction potential U(R) for a cluster of N = 10 solitons
(with single soliton parameters A = 3.503 and a = 2.530). Dynamically
stable bound states are possible for values of the topological charge m = 1
(R0 = 4.12) and m = 2 (R0 = 7.94) .
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R0 does not oscillate about this value during propagation:
we find that it oscillates about the radius R = 4.75. To re-
duce cluster oscillation we choose input cluster radius
R = 4.75, and also obtain longer propagation distance (as
expected). For other values of R (for example, R = 8),
the amplitude of the cluster oscillation is greater (Fig. 6).
In all three cases the clusters propagate to a similar dis-
tance, because the propagation length mostly depends on
the beam power. These distances favorably compare with
the distances obtained by other models [11,12]. The nonlin-

earity model used in [11] is with the inverse saturable inten-
sity, whereas the one in [12] is of the cubic-quintic type.

6. Propagation distance and beam power

There exists a significant analogy between a ring of iden-
tical weakly overlapping solitons carrying orbital angular
momentum and a vortex of the same topological charge,
Fig. 7. Vortices and clusters oscillate in a similar fashion
during propagation; their amplitudes and widths oscillate

Fig. 5. Rotating soliton clusters: (a) N = 6, m = 1, input cluster radius is
R = 6; (b) N = 7, m = 1, R = 7; (c) N = 11, m = 2, stationary bound state
with R0 = 7.61; (d) N = 12, m = 2, R = 12. Arrows indicate the direction
of rotation; for the last two rows, arrows show the trajectories of the flying
solitons, after the instability-induced splitting.

Fig. 4. Different interaction scenarios for a cluster of N = 10 solitons: (a)
m = 0, collapse and fusion through oscillations, input cluster radius is
R = 10; (b) m = 1, stationary bound state with R0 = 4.12; (c) m = 2,
stationary bound state with R0 = 7.94; (d) m = 3, soliton repulsion, R = 5.
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with the opposite phases, because of the beam power con-
servation. For both single vortices and soliton clusters, the
propagation distance is longer for smaller amplitude oscil-
lations and greater beam powers (Fig. 7), while the phase
distributions are very similar.

The quasi-stable propagation distance does not have to
always increase with the increasing beam power. Fig. 8 dis-
plays the propagation distance as a function of P for vor-
tices and soliton clusters of N = 6 solitons, with the same
topological charge m = 1. For P ffi 400, one can notice a

beam power threshold: above/below it, the propagation
distance increases with the increasing/decreasing P. The
parameter region below the beam power threshold corre-
sponds to small amplitudes and large beam widths, and
the propagation distances tend to very big values, while
the beam power approaches its minimum (32p for vortices,
and 48p for clusters of N = 6 solitons). Propagation dis-
tance minima are different for the two cases (�230LD for
vortices, and �200LD for soliton clusters).

7. Conclusions

We investigated analytically and numerically the propa-
gation of optical beams in nonlinear PR media. We utilized
a novel isotropic model for the generation of space-charge
field in PR media with local interaction of beams, that is
specifically useful for transverse 2D geometries. To observe
long-term quasi-stable dynamics, we determined optimal
propagation parameters for single Gaussian, single vortex,
and optical soliton cluster beams, using a variational tech-
nique. We found excellent agreement between numerics
and our predictions, based on the principle of minimum
action, in the cases of vortices and weakly overlapping sol-
iton rings. Because the ring-like soliton cluster is a discrete
generalization of the vortex soliton, we explored analogy
between them. We obtained that vortices and soliton clus-
ters suffer azimuthal instability and fragment into a num-
ber of moving fundamental solitons which fly tangentially
off the ring, as expected. For both vortices and soliton
rings, we established the existence of propagation distance
minimum and of beam power threshold.
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Fig. 6. Cluster’s mean radius hRi as a function of the propagation
distance z, for three different values of the input cluster radius. Parameters:
N = 8, m = 1.

Fig. 7. Propagation of vortices and soliton clusters with the same input
radius and topological charge m = 1, but with different beam powers: (a)
vortex with the beam power P = 217 (A = 0.46, a = 4.25); (b) cluster with
P = 1974 (N = 8, a stationary bound state with R0 = 4.25); (c) vortex with
P = 11162 (A = 3.30, a = 4.25). Vortex parameters are chosen from Fig. 2.

Fig. 8. Propagation distance as a function of beam power for vortices
(empty circles) and clusters of N = 6 solitons (filled circles), with the same
topological charge m = 1. Vortex parameters are chosen from Fig. 2.
Individual solitons parameters are chosen from Fig. 1, while input cluster’s
radii are determined as values corresponding to the minima of the effective
interaction potential.
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