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Following experimental observations on the building techniques of Apis mellifera, 
a model describing the construction of parallel combs in beehive is proposed. The 
model assumes as the essential elements in building activities the bee-wax and 
bee-bee interactions coupled by means of a feedback mechanism. The construction 
is represented by a set of dynamical nomlinear partial differential equations for the 
density of bees and the quantity of wax distributed in the hive. Using linear stability 
analysis the conditions for growth of the coherent spatially ordered inhomogeneous 
structure are derived. Numerical simulations depicting growth process in the non- 
linear regime have been performed, illuminating the role of the competition between 
bees and the bee-wax interaction. The model reproduces the beginning of the growth 
of parallel and equidistant combs satisfactorily. 

1. Introduction 

Constructional activity in social insects is a highly co-operative phenomenon of 
great complexity. Ants (Sudd, 1975; Ceuster, 1980a, b), bees (Darchen, 1959; Lin- 
dauer, 1961; Hepburn, 1986), wasps (Evans & Eberhard, 1970; Jeanne, 1975) and 
termites (Grasse, 1939, 1959; Bruinsma, 1979) build nests which have a coherent 
spatial structure characterized by a size much larger than the dimension of an 
individual insect. This structure results from the multitude of interactions between 
the workers as well as between the workers and the building material, as has been 
shown using mathematical models of nest construction in ants and termites (Callais- 
Hammono & Chauvin, 1972; Deneubourg, 1977, respectively). 

The building techniques of  Apis mellifera have been extensively studied (Darchen, 
1962; De Jong, 1982). However, a mathematical modeling of one of the crucial 
aspects of such a phenomenon,  the parallelism of combs, has only recently been 
considered using computer simulations (Beli~ et al., 1986). 

The purpose of the present paper is to consider biological and dynamic mechan- 
isms in comb construction, and to study a rudimentary non-linear mathematical 
model of  the building behavior. Linear stability analysis and computer simulations 
are implemented, in order to show that bee-wax and bee-bee interactions can induce 
the regularity of  the combs by means of a feedback mechanism. The model is based 
on Darchen's experimental observations and conclusions (1959). A good description 
of Darchen's experiments and results in English is given by Hepburn (1986). 

The paper is organized in the following fashion. After short presentation of the 
building behavior in section 2, a model of construction is introduced in section 3. 
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Mathematical  description of  the model and the linear stability analysis are provided 
in the next two sections. Numerical  simulations depicting some interesting features 
of  the model are presented in section 6, and the last section is reserved for 
conclusions. 

2. Building Behavior o f  Apis mell i fera 

Honey-bees,  Apis meUifera, are able to construct parallel combs and to maintain 
and even to restore their parallelism when it is disturbed (Fig. 1). So, in an empty 
(circular) beehive a swarm constructs more or less parallel and equidistant combs. 
The average distance between combs varies from 2-5-5 cm (Darchen,  1959). 
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FIG. 1. Schematic view of  few parallel comb-ribs placed on the ceiling of a honey-bee nest. Arrows 
indicate directions in which building proceeds. Our  model is not concerned with the fine hexagonal  
appearance of combs,  but  with the general aspects of  the initial stages of  parallel comb construction. 
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The building activities are social phenomena.  In order to construct, a minimum 
number  of  bees is necessary: at least 100 in the presence of the queen, and about 
10 000 in her absence (Darchen,  1959). 

The swarm chooses the highest place in a nest cavity, its ceiling, and hangs from 
there. It forms a drop like cluster in which the bees are in close contact, hanging 
one to the other or crawling about. At the beginning of the building, workers deposit 
at random small balls of  wax on the ceiling. It has been noticed, however, that the 
bees are attracted by already deposited wax and they accumulate more wax there 
(Darchen,  1959, 1980). Some of the deposits grow more quickly than others, and 
some are deserted. 

An arbitrary deposit  of  a new ball of  wax on one side of  the depot breaks its 
central symmetry.  This may be understood as a small fluctuation. However, this 
fluctuation can be amplified by the further deposition of new wax and the oval 
deposit  becomes more and more elongated. Wax of the thickness of  few millimeters 
starts to be shaped. Gradual ly  a single deposit  becomes a principal one. Its oval 
form already establishes an orientation in the construction. On both sides of  this 
future comb other oval deposits of  wax appear  in parallel. The bees are attracted 
by the wax and bore into it. Simultaneously they wave their legs, a signal for other 
workers to come and hang alongside (Darchen,  1959). 

Meyer (1951) noted that the cluster of  bees is an ordered agglomeration of workers. 
A structure exists in the cluster in the form of the waxer bee chains, which are 
suspended around the building work. Waxer bee chains are relatively stable and 
well oriented structures. Darchen (1962) stressed the role of  chains in the regulation 
of  construction, and in maintaining the parallelism of combs. The workers in the 
chain are subject to strong forces. Following Darchen 's  hypothesis, the muscular 
pull exerted by the legs of  bees in a chain regulates the construction. 

We can understand the chains as an elastic scaffolding, which transfers information 
and by its presence determines future building activities. The role of  the chains is 
to determine and maintain comb orientation, and to co-ordinate further construction 
at a distance much greater than the length of  a single bee. However,  the orientation 
of  chains is itself dictated by the orientation of the initial stages of  construction. 
Orientation of these original deposits of  wax is the outcome of  fluctuations (as 
explained above).  The waxer bee chains can amplify some of these fluctuations and 
make one orientation of  combs predominant .  Due to the presence of  chains the 
bees are capable  of  rectifying any incorrect work which has been performed,  as 
well as any disturbances made by an experimenter.  

Evidence for the importance of collective effects in construction is reinforced by 
the following experiment  (Darchen,  1959): a metal blade placed on the edge of  the 
comb caused a halt in building; however, when the metal was perforated so that 
workers from both sides could be in tactile contact, the construction continued, and 
the blade was integrated into the wax. 

3. Comb Construction Model 

The experimental  data from Darchen (1959) lead us to the conclusion that there 
are two principal mechanisms in the building activity of  honey-bees. The first crucial 
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mechanism is the interaction between the bees, the second is that the wax plays the 
role of  an attractor for the workers. The two mechanisms are coupled and there is 
feedback. The workers in a chain are oriented more or less parallel in order to resist 
strong forces inside the chain and to maintain its coherence. The bees deposit or 
mold wax in front of  them, and other workers attach to their legs more or less in 
parallel in order to deposit  or mold by themselves. 

Our intention is to model the co-operative building behavior of  bees, which 
appears  after the initial stage of  random depositing of  wax. The goal of  describing 
and explaining such a complex phenomenon in all its details, is far from being 
achieved. In a simple model we try to keep only the essential features of  this 
behavior,  in order to express them in form of  simple equations. These equations, 
however, are able to reproduce the outcome of  such co-operative behavior,  i.e. the 
parallel comb construction. 

The workers are in mutual interaction, and also they are attracted by the wax. 
The bees which deposit a n d / o r  bore are influenced by other workers. Consequently,  
the bee-bee  interaction leaves a print in the wax. On the other hand, an oriented 
(oval) deposit  of  wax has a tendency to grow (Darchen, 1959). The orientation of 
the deposit  influences the orientation of  the bees working on it. This is an indication 
of  a feedback due to the coupling of  bee-wax and bee-bee  interactions. 

In order to describe the co-operativity effects, the competi t ion of groups of bees 
has to be taken into account. Darchen (1959) reports the competi t ion of differently 
oriented groups during the construction. The form of a deposit influences this 
competit ion, since the number  of  workers along the longer side of  an oval deposit 
is larger than the number  of  those along the shorter side. The larger group acts to 
extend even more the longer side of  deposit. As a result of this competi t ion one 
group wins (usually the larger), and one orientation of the comb is adopted.  Darchen 
finds the confirmation of this in the formation of long chains of  parallel bees. 

The competi t ion between two differently oriented groups of bees plays an impor- 
tant role in comb orientation. The same effect, although in a more complex way, 
may characterize the action of the waxer bee chains. 

4. Mathematical Description of the Model 

In order to make a very simple model,  we consider only the beginning of  the 
co-operative construction in the plane parallel to the ceiling (and at a small distance 
from it). It is reasonable to suppose that the competi t ion between two differently 
oriented groups of bees is stronger when the angle between their orientations is 
larger. For simplicity we consider only two extreme cases: the workers parallel either 
to x0z or to y0z plane (z axis being perpendicular  to our chosen x-y plane, and 
pointing downward).  By Ax(x, y) we denote the average density of  the bees parallel 
to the x0z plane. Similarly, the average density of  workers in the y0z plane is given 
by ay(x, y). We may now write partial differential equations which describe how 
the volume of deposited wax C and the density of  oriented bees A~ and ay change 
in time: 

O,Ax = c~ - ¢rA,~ + ~(  A2xAy- AxA2y) + OAA~ + "yA~O~C (1) 
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O ,Ay = c~ - 7rAy - - /3(AxAy - A×Ay ) + O AAy + yAyO~ C 

5 

(2) 

O,C = a (A~ + Ay) - vC + (Ax + A y ) D A C ,  (3) 

where a, denotes the partial derivative with respect to t, A stands for the two- 
dimensional Laplasian, and a,/3, % . . .  are various phenomenological  parameters.  
This set of  equations is somewhat  simplified as compared to the equations from 
Beli~ et al. (1986), since the 6 and the e terms from there are absent. It is found 
that removal of  these terms does not affect the qualitative behavior of the model, 
but makes the analysis simpler. 

The first term on the right of  eqn (1) is the flux of differently oriented bees active 
in the construction, which come into the considered volume near the top of the 
beehive. The loss of  some bees parallel to the plane x0z due to their orientation 
change or departure is taken into account by the second term. The competit ion of 
two oppositely oriented groups of workers, as described above, is expressed by the 
next term. It originates from the local non-linear coupling between Ax and Ay, 
which is modeled by a gain term A y F ( A x ) ,  corresponding to the re-orientation of 
the Ay-bees due to the predominance of the Ax-bees, and a loss term A~F(Ay)  which 
corresponds to the opposite situation. In such an autocatalytic reaction: 

F I A  } 

Ay{  ' A~, (4) 
F{A~} 

it is assumed that the function F(A) ,  chosen at convenience, can be expanded in 
a power  series: 

F ( A )  = i~A +/3A 2 + . . . .  (5) 

When only the first non-linear term is retained, the non-linear terms in eqns ( l )  and 
(2) are obtained. The fourth term in eqn (1) represents uniform non-local imitation. 
The bees at some small distance from a point (x, y) tend to orient themselves in 
alignment with the bees at that point. The presence of this term has a smoothing 
influence, and prevents the development  of  discontinuities. The last term corresponds 
to the attraction of bees by the wax in front of  them. This requires the parameter  
3' to be negative. The similar terms for Ay bees appear  in eqn (2). The third equation 
describes the change in time of the quantity of  wax as a consequence of the influx 
of  new wax deposited by bees (the first t e rm)  the removal of  wax (the second term), 
and the deposit  of  wax due to imitation. 

At present there exists no known analytical method for exact solution of eqns 
(1-3). In our earlier paper  (Beli6 et aL, 1986) we developed a numerical method 
and an algorithm for t reatment of  these equations, based on fast Fourier transform. 
Some of  our new numerical results are presented in section 6. Here we perform 
linear stability analysis of  the equations, and show that the system under certain 
conditions tends to bifurcate, preferring states with unequal distributions of  bees. 
Such states with predominant  bees of  one orientation (x or y) then lead to oriented 
wax structure, i.e. to the appearance  of parallel combs. 
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5. Linear Stability Analysis 

In order to obtain some ideas about the behavior of the system we apply linear 
stability analysis (Nicolis & Prigogine, 1977). The homogeneous stationary-states 
of  the system are given by eqns (1-3) when all time and space derivatives are set 
to zero: 

2 "~ ¢ - zrAx+fl(AxAy-AxAy) = 0  (6) 

4, - wAy+ j3(AxA~- A~Ay) = 0 (7) 

a(Ax + Ay) -  ~,C =0.  (8) 

From these equations one obtains three different types of stationary solutions An, 
A y ,  C :  

(1) When 

4, 
Ax = my =-- ,  (9) 

T" 

the bees parallel respectively to the planes y0z and x0z are equally distributed. 
(2) When 

and A y = ~ - \ - - - ~ - - ~ ]  , (10) 

the orientation of  bees following the plane x0z is predominant. 

--  _ -=  - - _ &  [ ¢ 2  rr,~,/2 and ay=4,---+[ 4,2-7"rx1'/2 
Ax=rr - \Tr - ' -2 f l ]  7r \zr 2 28] ' (11) 

the majority of  workers are parallel to the plane y0z. 
The stationary solution for the distribution of  wax is the same in all three cases: 

a 2a4, 
C = - ( A ~ + A y ) =  (12) 

12 /27}" 

Since the densities of  bees, Ay and Ax, must be real and positive, the solutions (2) 
and (3) exist only if the inequality 

~b> , (13) 

is satisfied. When 

[ . r r3\  1/2 

4,<l~-A~] , (14) 
\ z p /  

the solutions (2) and (3) do not exist; only the solution Ay = Ax = 4,/~r is possible. 
The critical value of  the parameter ¢c = (Tr3/2fl)~/2 corresponds to the bifurcation 
point in the 4 , -  Ax diagram, where a branching of  the stationary solutions of  eqns 
(1-3) occurs. 
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In order  to study the stability of  each of  the three solutions for qb > ~b¢, as well 
as o f  the unique solut ion for ~b < &c, linear stability analysis is applied,  i.e. small 
per turbat ions  a round  the stat ionary solutions (9-12) are made  and the response o f  
the system is analyzed.  Let us suppose  that the time- and space-dependent  perturba- 
t ion is o f  the form: 

P = SP e '°* e i(k~x+kry). (15) 

The per turbat ion  can either be an external dis turbance or an internal fluctuation 
a round  the stationary-state.  We are interested not  in the origin o f  such a per turbat ion 
but  in its time evolution,  i.e. whether  it will be damped  (so that the system comes 
back to its original state) or amplified (so that the system moves to another  state). 
In the latter case we conc lude  that the original stat ionary-state is unstable. In order  
to make  such an analysis,  the s tat ionary solutions together  with the per turbat ion 
(15) are replaced into eqns (1-3).  Only the terms linear with respect to the perturba- 
tion are retained: 

0)c5A~ = - 7rSAx + / 3 [ ( A ~ -  2AxAy)Say + (2AxAy - ay)SAx] 

- 0(k2x + ky)SAx - 7Axk~.SC (16) 

0)~Ay = - -  "n'~Ay +/3[(2AyAx - A2x)SAy + (Ay - 2AyAx)SAx] 

- O(k x 4- ky)~Ay - TAyky~C (17) 

0)SC = a (SAy 4- S A y ) -  ~'SC -AxO(k~4-k~)~C-AyD(k2x+k~)SC. (18) 

From the cor responding  secular  determinant  one obtains after some algebra a cubic 
equat ion  with respect to 0). This equat ion has three solutions:  

0), = - zr - / 3  (A2x - 4ArA x 4- Ay) - 0 (k :  4- ky), (19) 

and 

where 

( U, + U2) ± ½[( U, - U2) 2 - 4 U3] ,/2, (20) 
0)2'3 - -  2 

U2 = zr+ 0(k~+ ky) (22) 

U3 = c~3,(Axk~ + ayk~). (23) 

The third solut ion 0)3 is always negative and therefore it does not contr ibute to the 
change  o f  stability o f  various stationary-states.  The remaining solutions 0)1 and 0)2 
cor respond  to two different types o f  instability. 

The solut ion 0)1 characterizes the stability o f  the homogeneous  stationary-states.  
As can be seen from the expression (19), the state with equally distr ibuted bees 
(mx = A y )  is stable for subcrit ical values o f  the flux, ~b < ~bc, since the root  ~o ° is 
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negative. Notice that all parameters  (except 3`) are positive. This solution is the 
largest when the spatial term is vanishing (i.e. when ks = ky = 0), and for ~b > ~b,. it 
becomes positive. Under these conditions any fluctuation is amplified and the system 
evolves towards the stationary-state with the predominant  single orientation of bees 
(either Ax > Ay or Ax < A v). Taking into account that the corresponding solutions, 
w~' and wt y [in eqn (19)], are always negative, both of  these states, expressions (10) 
and (11), are stable and the system cannot move back to the state A~=A,.. This 
kind of instability cannot generate a spatial structure. 

In each of  the steady-states, the spatial structure can be generated for positive 
values of  the root w~. In order to find which one of the spatially inhomogeneous 
modes will grow first, it is necessary to find the wave vector k for which the value 
of  o:~ is maximal.  It can be seen that for A~ ~ Ay, the root w~ is maximal when the 
term U3 in expression (20) is the largest. In the state with a majority of  workers 
parallel to the plane x0z (A~> Ay), this is the case when, for a given k - ' = k ~ + k ~ ,  
vector kx is the largest, i.e. when ky = 0. Therefore,  an inhomogeneous structure 
appears  following the x axis only. The vector k~ maximizing the solution ~o~ is 
computed for all parameters  equal to unity except 3  ̀and 4~: 

The analogous expression for k~ can be obtained for the state Ax< A:,, but then 
the spatial structure follows the y axis. For such a vector, the root w{ becomes 
positive when 

(2 ~/-~ + qS- I/:)-~ 
3,< (25) 1 +(1 - 1/2q52) '/2" 

The corresponding curve P in the ~b - 3/diagram shown in Fig..~, "~ separates regions 
III  and IV, where the states A~ ~ A~ are spatially structured, from region II, where 
they are not. 

In the symmetric state A~ = A,,  the root o~ becomes positive for the total wave 
vector 

3`[,D _ / ~"l '~-~[ 
k2= 

if 

3' < - ( 2  ' /2+ ~-' /2)2. (27) 

The corresponding borderline limiting the domain of  the growth of  an 
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i nhomogeneous  structure in this state is plotted on the same diagram (Fig. 2, curve 
Q). The stability analysis o f  our  bee -wax  model  is summarized  in Fig. 2. The five 
regions in the diagram contain the windows depict ing various stationary-states and 
possible transit ions between them. 

(i) In zones I and II the spatial structure never appears,  since either the colony 
of  bees is too small or  the interaction with the wax is insufficient. 

(ii) In regions I I I  and IV there are enough workers whose interaction with the 
wax is s t rong enough  to cause creation o f  a growing spatial instability. When the 
stat ionary-state with the p redominance  o f  the Ax-bees is per turbed by the mode  
with the k-vector  maximizing the solution o2~,, the growing "wave"- l ike  structure 
follows the x axis. In the opposi te  case, when the majority o f  bees is oriented 
parallelly to the plane y0z, the "wave"  cor responding  to the beginning of  the combs 
follows the y axis. Other  modes  with both kx and ky different from zero are also 
possible (as will be seen in the next section),  however,  the dominan t  mode  is the 
fastest growing mode  k = k~ with extreme w~. In zone IV, in addit ion,  the unstable 
s tat ionary-state  As = Ay could also be spatially organized,  because ¢o°> 0. However,  
this never happens ,  since o2~< o2~, [see eqns (19) and (20)]. Before a structure is 
created, the system goes to the state A~ # Ay. 

(iii) In domain  V, the state A x = A  t is the only one possible. I f  the bee-wax 
interaction is very strong (large I~'1), a spatial inhomogenei ty  can be created. Since 

I0 

12 

14 

?- 

16 

0.2 0.4 0.6 qbc 0 8  I-0 1-2 1,4 1-6 qb 
- - T - - T - - T  1 1 T T - - T - -  

FIG. 2. ~b-7 diagram summarizing the stability analysis. The curves plotted are given by the expressions 
in eqns (25) and (27). They separate regions in which different conditions for growth of instabilities 
exist /see the text). 
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this state is symmetric, the mode with one of  the components  k~ or  ky equal to zero 
is no more dominant.  

Therefore in the regions of  parameters I I I ,  IV and V an inhomogeneous structure 
may appear.  

6. Numerical Results 

In this section we present some of  the results obtained by numerical simulation 
of  our  comb construction model. The purpose is to support  and display basic features 
built into the model,  and to demonstrate and illustrate general qualitative agreement 
between the model and experimental facts. The results are obtained by direct 
numerical integration of  the coupled partial differential eqns (1-3) in the manner  
described in Beli~ et  al. (1986). The numerical method applied here is essentially 
the same, only our numerical capabilities have increased substantially, since we 
moved from an IBM 360 to a CRAY XMP. 

The numerical algorithm has been described in detail in Bell6 et al. (1986), hence, 
we will not dwell much on its introduction. It is a spectral algorithm based on a 
fast Fourier transform technique. It consists essentially in the discretization of the 
marching variable (time), and in the solution of the spatial problem at each temporal  
instant by going back and forth from the direct to the inverse space. 

Two important  aspects of  the model are discussed here: the parallel construction 
of  the combs and the bee-bee  competition. A case of the parallel growth of a 
sinusoidal distribution whose k-vector has both x and y components  is also included. 
Such a mode,  even though it is not the fastest growing, is still supported by the system. 

Figure 3(a) - (d)  depicts growth of  a perturbation made in the initial steady-state 
distribution of  the bees and the wax. The relevant parameters  in this case are set 
to ), -- -10 ,  ~b -- 1-4, corresponding to region IV from Fig. 2. Other parameters  are 
kept fixed to 1. The initial wax distribution and the distribution of  Ay-bees are 
chosen steady: C = 2.8, Ay ~ 0.192 (arbitrary units), while on the steady-state distri- 
bution of  Ax~2.61  a small perturbation in the form of a Gaussian ~Ax= 
0.1 e x p ( - 2 x 2 - 0 . 1 y  2) is added. The initial distribution of the Ax bees is shown in 
Fig. 3(a). When there is no perturbation, nothing happens in the temporal  evolution 
of  the system, as was checked numerically, in order to test the programs. However,  
as the perturbation is turned on, the system changes, and the situation at t = 1.7 is 
presented in Fig. 3(b)-(d) .  It is seen that the growing parallel humps in the wax 
and the Ax-distribution appear,  signifying that the possibility of  the parallel initial 
comb construction is contained and can be explained by our model. 

The Ay distribution of bees, which is substantially smaller than the A~ in this 
example,  does not influence the wax distribution much, but it displays another 
characteristic mechanism built into the model:  the bee-bee  competition. Namely, 
the parallel humps in the Ay-distribution grow at the places where there are fewer 
Ax bees, and the large central dip is carved out by the peak in the Ax distribution. 

Further details of  the bee-bee  interaction are presented in Fig. 4(a)-(d) .  This set 
displays the interaction between two clusters of  bees situated along the y axis, grown 
atop a steady-state [Fig. 4(a) and (b)]. Since the Ax bees are more numerous,  they 
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are expected to win, and to convert the Ay bees into the Ax bees. This is exactly 
what is happening in Fig. 4(c) and (d), by time t = 0.12: the A~ bees are advancing, 
the Ay bees are receding. 

In Fig. 5(a)-(c) a typical parallel growth of combs, as predicted by the model, is 
depicted. Initially a fluctuation of a few parallel humps of  Ax bees is formed on 
the top of a steady-state deposit. The k-vector of this initial wave-like fluctuation 
is chosen non-parallel to either of the axis. The values of  the parameters (y = - 5 ,  
~b = 1.4) are chosen so as to place the system in region III, where a coherent spatial 
structure can grow. The initial Ay and C distributions are steady-state with slight 
oval symmetric Gaussian additions. The comb structure grown out of such initial 
conditions is shown in Fig. 5(c). 

7. Conclusions 

The building behavior of  A. mellifera is so complex that a realistic mathematical 
description seems to be out of reach presently. Therefore, our intention was to make 
a simple mathematical model, which however, reproduces some important aspects 
of  comb construction. Having this in mind we propose a rudimentary model on the 
level of  the phenomenological description of  the building (section 3). The model 
is conceived as sufficiently simple to be easily "'translated" into mathematical 
equations, but still in general agreement with experimental observations. 

The essential ingredients are bee-bee and bee-wax interactions coupled by means 
of  a feedback mechanism, and the role of  the competition between bees is stressed. 
The mathematical model that emerges is subordinated to the purpose of describing 
approximately a real biological system. Each term in the partial differential equations 
is weighted by a parameter. Experiments to determine the parameters and to test 
relative importance of  each are still missing, so that the majority of  parameters are 
set equal to 1 in the simulations and in the linear stability analysis. The set of  
non-linear equations, although made to describe building behavior in bees, is more 
general in the sense that it may be adapted to treat other systems with similar types 
of  interaction and feedback. 

In the linear stability analysis two parameters are especially important. The first 
one, the flux qS, is related to the number of  bees which come into the studied region 
of construction. The asymmetry in the orientation of bees (the dominance of Ax- 
or Ay-bees) is only possible if their number  is sufficient. The second relevant 
parameter corresponds to the attraction of the bees by the wax (y).  Both parameters 
have to be large enough (in absolute values) in order that a coherent inhomogeneous 
structure can appear, corresponding to the comb construction. Note also that our 
units are arbitrary and, without appropriate experiments, they cannot be fixed. 
However, this is not necessary for our rather qualitative analysis. 

The linear stability analysis gives us only a hint how the instabilities lead to the 
growth of  parallel combs. The system is non-linear, and such an approach applies 
only to the linear region around stationary-states. However, the advantage of  this 
method is in its analyticity. What happens in the truly non-linear regime can only 
be seen in a numerical simulation. Our simulations confirm the predictions of  the 
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l inear  stabil i ty analysis,  but  also p rov ide  fur ther  in fo rma t ion  about  the way in which 

the s t ructure  grows. It is shown that  the coheren t  s t ructure s imilar  to the combs in 

a beeh ive  can be created start ing from the s ta t ionary-s ta te  in regions III  and IV 

(Fig. 2). Asymmet ry  in the n u m b e r  o f  A x and Ay-bees, together  with the mechan i sm 

of  the non- l inea r  compe t i t i on  be tween  them, are impor tan t  for the ma in t enance  o f  

the cohe rence  o f  the g rowing  structure.  

In sect ion 2 D a r c h e n ' s  conc lus ion  is men t ioned  about  the m i n i m u m  number  o f  

bees necessary for the beg inn ing  of  const ruct ion.  The data  which a biologis t  wants 

to obta in  f rom an expe r imen t  are not  necessari ly the same as the data  we need in 

o rder  to fix the re levant  parameters  in our  ma themat ica l  mode l  o f  cons t ruc t ion  

activities.  Consequen t ly ,  we suggest exper iments  to be made  with varying number  

o f  workers  act ive in the cons t ruc t ion  (which would  cor respond  to different values 

o f  pa rame te r  ~b) in o rder  to see how this inf luences the bui ld ing  o f  combs.  The real 

Dumber  o f  bees has to be adjus ted  to account  for  the presence  or absence o f  the 

queen ,  in o rde r  to obta in  the correct  effective n u m b e r  o f  active workers.  It is known 

that  the presence  o f  a queen  greatly s t imulates  the construct ion.  

It can be conc luded  that  the model  reproduces  well the initial growth o f  parallel  

and equid is tan t  combs.  This mode l  may be fur ther  improved  when  related experi-  

ments  are pe r fo rmed .  

One of the authors (MRB) would like to thank the Alexander yon Humboldt Foundation 
for financial assistance during his stay in the Federal Republic of Germany. 
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