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Abstract
The propagation of three-dimensional soliton clusters in strongly nonlocal nonlinear media is
investigated analytically and numerically. A broad class of exact self-similar solutions to the
strongly nonlocal Schrödinger equation has been obtained. We find robust soliton cluster
solutions, constructed with the help of Whittaker and Hermite–Gaussian functions. We
confirm the stability of these solutions by direct numerical simulation. Our results demonstrate
that robust higher-order spatial soliton clusters can exist in various forms, such as
three-dimensional Gaussian solitons, radially symmetric solitons, multipole solitons and shell
solitons.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Studies of self-similar solutions of nonlinear (NL) differential
equations have been of great value in understanding widely
different NL physical phenomena [1]. Although self-similar
solutions have been extensively studied in many fields such as
hydrodynamics and quantum field theory, their applications in
optics have not been widespread [2]. Some important results
however, have been obtained with previous theoretical studies
by considering self-similar behaviour in different systems, for
example, in radial pattern formation by counterpropagating
beams in transparent cubic-nonlinearity medium [3], NL
propagation of pulses with parabolic intensity profiles in
optical fibres with normal dispersion [4] and NL compression
of chirped Hermite–Gaussian (HG) solitary waves in fibre
absorbers [5].

Recent interest in the study of self-trapped optical beams
in nonlocal NL media has been stirred by the experimental
observation of nonlocal spatial solitons in liquid crystals [6]
and lead glasses [7], as well as by some interesting theoretical
predictions [8–11]. Some of the predicted properties of

nonlocal NL models suggest that in such optical media one
should expect stabilization of different types of nonlinear
structures, such as necklaces [12] and soliton clusters [13]
in two-dimensional (2D) transverse spaces. The creation
of 3D solitons, built out of matter waves or NL light in
the form of light bullets, presents a great challenge to
experiment. One possibility is offered by the Bose–Einstein
condensates (BECs) with the attractive interaction between
atoms [14]. 3D solitons supported by 3D optical lattices
have been reported in [15]. The form of solitons there was
predicted by the variational approximation, which was used
as an initial guess to generate several examples of stable
3D solitons in direct simulations. Such spatial solitons are
essentially confined to one or several cells of the optical
lattice. It has also been demonstrated that the localized wave
packets in cubic NL materials with a symmetric nonlocal NL
response of an arbitrary shape and degree of nonlocality can
be described by the general nonlocal nonlinear Schrodinger
equation (NNSE). The nonlocality of the nonlinearity prevents
beam collapse in optical Kerr media in all physical dimensions,
resulting in stable solitary waves under proper conditions
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[10, 11, 16]. Stable 3D spatiotemporal solitons in cubic
nonlocal NL media have been reported in [17].

In this paper we study the propagation of light wave
packets in strongly nonlocal media, in (3+1)D. We demonstrate
the existence of a class of robust soliton waves propagating in
a self-similar manner. We find that the predicted self-similar
waves can be regarded as clusters of stable 3D spatial solitons.

The paper is organized as follows. In section 2 we
introduce a general nonlocal NL model, described by the
general NNSE. Section 3 presents the self-similar method of
solution of NNSE in the strongly nonlocal limit. Section
4 displays various exact soliton cluster solutions to NNSE.
Section 5 brings conclusions.

2. The general nonlocal nonlinear model

We consider evolution of a scalar wave field u(r, t) governed
by the general NNSE in the scaled form:

i
∂u

∂t
+

1

2
∇2u + V (r)u + N(I)u = 0, (1)

where V(r) is an external potential, r = (x, y, z) is the scaled
3D position vector and I = |u|2 [10, 11]. The nonlinearity N(I)
is assumed of the general nonlocal NL form:

N(I) =
∫

R(r − r ′)I (r ′) d3r ′ (2)

where the integral is over the whole space and the kernel
R(r), also known as the response function, is regular, real,
and normalized,

∫
R(r) d3r = 1. The nonlinear Schrödinger

equation (1) possesses a number of conserved quantities,
among them the power P = ∫

I (r) d3r, the momentum M =∫
(u∗∇u − u∇u∗) d3r, the angular momentum L = ∫

r ×
(u∗∇u − u∇u∗) d3r and the Hamiltonian H = ∫

(|∇u|2 +
V I − 1/2 NI) d3r.

The general NNSE model naturally arises in NL optics,
where it describes the propagation of an electric field envelope
in a wave-guiding potential, in the paraxial approximation.
The nonlocal nonlinearity then corresponds to the change
in the refractive index of the medium, t corresponds to the
propagation distance z and r = (x, y) spans the 2D transverse
space. The nonlocal index change, caused by the propagating
beam, involves some transport process in the medium, e.g.
heat transfer in materials with thermal nonlinearity [18],
diffusion of molecules in atomic vapours [19] or charge
separation in photorefractive crystals [20]. The general NNSE
also appears in the description of BECs [21, 22], in which case
u stands for the collective wavefunction and I is the density of
atoms in the condensate. Then V represents the magnetic trap
potential, t is the time, and equation (1) becomes the nonlocal
Gross–Pitaevskii (GP) equation.

In the limit when the response function R(r) is sharply
peaked at a point r and much narrower than the intensity
distribution I(r), the NL term becomes local, N(I) ≈ I.
In NL optics the model (1) then becomes the standard
NL Schr ′′odinger equation (SE) with an external potential,
describing the local Kerr media. In BECs it becomes the
standard GP equation. In the opposite limit, when the response
function is much broader than the intensity distribution, the

NL term becomes proportional to the response function,
N(I) ≈ −PR, where P is the beam power. Assuming that
the intensity distribution is peaked at the origin, one can
expand the response function at the origin, to obtain N(I) ≈
−P(R0 + R2r2). In this case the highly nonlocal nonlinear
SE becomes the linear SE with a harmonic potential. A
more general treatment in [16], even without the external
potential, leads to a NL optical model in which the change
in the NL term is proportional to a NL function of the power,
�N(I) ≈ −α2(P)r2. Although linear in u, the model still
describes a highly NL phenomenon of solitons through the
dependence of the coefficient α on the beam power P [16]. For
this reason the model is referred to as the strongly nonlocal
SE. It has been used in [6], for example, to explain the
experimental observation of optical spatial solitons in nematic
liquid crystals. In this paper we will be concerned with this
limit of the general NNSE.

3. Exact self-similar solutions of the strongly
nonlocal Schrödinger equation

In the limit of strongly nonlocal nonlinearty, the evolution of
an optical field u in three-dimensional media is described by
the strongly nonlocal SE [11, 16]:

i
∂u

∂t
+

1

2
∇2u − sr2u = 0, (3)

where t is the evolution coordinate, r = (x, y, z) spans
the 3D ‘transverse’ coordinate space and s is the parameter
proportional to α2(P), containing the influence of beam
power. Note that P is constant, equal to the total input
power P0. Evidently, the same equation describes the time-
dependent linear quantum harmonic oscillator. Hence, in
solving equation (3) we will also be solving a linear quantum-
mechanical problem. Although many different solutions to
the time-independent quantum harmonic oscillator in different
coordinate systems are known, we will be looking for the self-
similar time-dependent solutions of equation (3) in the form
of localized 3D soliton clusters. Such solutions will naturally
impose certain conditions on the input parameters and the
parameters describing these solutions. It should also be noted
that beam collapse cannot occur in equation (3).

The second term in equation (3) represents diffraction
and the third term originates from the optical nonlinearity.
We treat equation (3) in cylindrical coordinates, by the
method of separation of variables. We consider only the
case s > 0. In cylindrical coordinates, the Laplacian is
∇2 = 1

ρ
∂
∂ρ

(
ρ ∂

∂ρ

)
+ 1

ρ2
∂2

∂ϕ2 + ∂2

∂z2 , where ϕ is the azimuthal angle,

r2 = ρ2 + z2 and ρ2 = x2 + y2. The separation of variables
u(t, z, ρ, ϕ) = U(t, ρ)�(ϕ)G(t, z) in equation (3) leads to
the following three equations:

d2�

dϕ2
+ m2� = 0, (4a)

i
∂U

∂t
+

1

2ρ

∂

∂ρ

(
ρ

∂U

∂ρ

)
− m2

2ρ2
U − sρ2U − µU = 0, (4b)

i
∂G

∂t
+

1

2

∂2G

∂z2
− sz2G + µG = 0, (4c)

2
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where µ and m are non-negative real constants. From
equation (4a) we have �m(ϕ) = cos(mϕ) + iq sin(mϕ), where
the parameter q (0 � q � 1) determines the modulation depth
of the beam intensity [23].

Now we solve equation (4b) using the self-similar
method. Following [24], we define the complex field as
U(t, ρ) = A1(t, ρ) exp[iB1(t, ρ)], where A1 and B1 are
the real functions of t and ρ. Substituting U(t, ρ) into
equation (4b), we find the following two coupled equations
for the phase B1(t, ρ) and the amplitude A1(t, ρ):

−∂B1

∂t
+

1

2

[
1

A1

∂2A1

∂ρ2
−

(
∂B1

∂ρ

)2

+
1

ρA1

∂A1

∂ρ

]

− m2

2ρ2
− µ − sρ2 = 0, (5a)

1

A1

∂A1

∂t
+

1

2

(
2

A1

∂B1

∂ρ

∂A1

∂ρ
+

∂2B1

∂ρ2
+

1

ρ

∂B1

∂ρ

)
= 0. (5b)

To find a self-similar solution of equation (4b), we assume
that the amplitude and the phase have the form [24]
A1(t, ρ) = k1P0

w1(t)
F (θ1) and B1(t, ρ) = a1(t)+b1(t)ρ+c1(t)ρ

2,
respectively. Here k1 is the normalization constant and P0 is
the initial power of the beam. Other variables are defined as
follows: w1(t) is the beam width, F(θ1) is a real function to
be determined, θ1(t, ρ) is the self-similar variable and a1(t)

is the phase offset. The functions θ1(t, ρ), b1(t) and c1(t),
defined by the form of Al and Bl, are found from equation (5b):
θ1(t, ρ) = ρ2

w2
1
, b1(t) = 0 and c1(t) = 1

2w1

dw1
dt

. The amplitude

A1(t, ρ) is found from equation (5a) by solving the following
differential equation:

−w2
1

2

(
da1

dt
+ µ

)
F +

dF

dθ1

+ θ1

[
d2F

dθ2
1

+
w2

1

2

(
−w1

2

d2w1

dt2
− sw2

1

)
F

]
− m2F

4θ1
= 0.

(6)

Inserting a variable transformation F(θ1) = θ
− 1

2
1 f (θ1), after

some algebra we arrive at

d2f

dθ2
1

+

[
w2

1

2

(
−w1

2

d2w1

dt2
− sw2

1

)

− 1

θ1

w2
1

2

(
da1

dt
+ µ

)
+

1

θ2
1

1 − m2

4

]
f = 0. (7)

Setting

w2
1

2

(
−w1

2

d2w1

dt2
− sw2

1

)
= −1

4
, (8a)

−w2
1

2

(
da1

dt
+ µ

)
= n, (8b)

one gets the following equation from equation (7):

d2f

dθ2
1

+

[
−1

4
+

n

θ1
+

1
4 − (

m
2

)2

θ2
1

]
f = 0, (9)

where n is a real number. Equation (9) is the well-known
Whittaker differential equation, whose solutions are known as
the Whittaker functions [25]:

f (θ1) = �nm(θ1) = e− θ1
2 θn

1

	
(

1
2 − n + 2m

)
×

∫ ∞

0
τ−n− 1

2 +2m

(
1 +

τ

θ1

)n− 1
2 +2m

e−τ dτ , (10)

where the real part is Re[n − 1/2 − 2m] � 0, and n−1/2−2m

is not an integer. 	 is the Gamma function. Equation (8a) is
re-expressed as

1

2

(
dη

dt

)2

+
2sw4

0(η
2 − 1)(η2 − λ)

η2
= 0, (11)

where η = w1/w0 and λ = 1/2sw4
0. Here the subscript ‘0’

denotes the initial value of the corresponding quantity at z = 0.
Taking η(t)|t=0 = 1 and dη(t)/dt |t=0 = 0, and integrating
equation (11) yields

w2
1 = w2

0

[
cos2

(
2
√

sw2
0t

)
+ λ sin2

(
2
√

sw2
0t

)]
. (12)

Hence, when λ = 1 the beam diffraction is exactly balanced
by the nonlocality. Since w1 = w0 for λ = 1, the beam width
is not connected with the propagation distance. Rather, the
wave packet size becomes independent of time. It is clearly
seen that the beam becomes an accessible soliton [16]. The
parameters can now be determined, and they are given by
w1 = w0, c1 = 0 and a1(t) = a10 − µt − 2nt

w2
0

. Thus, the exact

self-similar soliton solution of equation (4b) can be written as

U sol
nm(t, ρ, ϕ) = k1P0

ρ
ψnm

(
ρ2

w2
0

)
eia1(t). (13)

Next, we seek the solution of equation (4c) using the same
method. We obtain the self-similar solution of equation (4c)
in the form of HG functions [2]:

G(t, z) = A2(t, z) eiB2(t,z), (14a)

A2(t, z) = k2√
w2(t)

exp

(
1

2
− θ2

2

2

)
Hl(θ2), (14b)

B2(t, z) = a2(t) + b2(t)z + c2(t)w
2
2θ

2
2 , (14c)

where k2 = (
1

2l l!
√

π

)1/2
and l is a non-negative integer. Hl(θ2)

are Hermite polynomials of the lth order, and θ2 and b2 are
given by θ2(t, z) = z

w2
, b2 = 0. The remaining parameters

w2(t), a2(t) and c2(t) take the form

w2
2 = w2

0

[
cos2

(
2
√

sw2
0t

)
+ λ sin2

(
2
√

sw2
0t

)]
, (15)

da2

dt
= −µ − 2l + 1

w2
2

, (16)

c2(t) = 1

2w2

dw2

dt
. (17)

When λ = 1 this solution also becomes an accessible
soliton. The above parameters are then given by w = w0,
a2 = a20 − µ − (2n+1)t

w2
0

, c2 = 0. Hence, we obtain the HG

self–similar soliton solution to equation (4c):

Gsol
l (t, z) = k2 exp[ia2]√

w0
e

1
2 − z2

2w2
0 Hl

(
z

w0

)
. (18)

3
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(a) (b)

Figure 1. Comparison of the analytical solution for intensity with
the numerical simulation, for different n and l, when m = 0. Here
the parameter l is taken to have the values l = 0, 1, 3 from left to
right. (a) Analytical solution of equation (19) for n = 0 (top) and
n = 1 (bottom). (b) Numerical simulation of equation (3) for n = 0
(top) and n = 1 (bottom).

Putting all the partial solutions together, we finally obtain the
exact self-similar soliton solution of equation (3):

usol
l nm

(t, z, r, ϕ) = kP0

ρ
√

w0
[cos(mϕ) + iq sin(mϕ)]

×Hl

(
z

w0

)
ψnm

(
ρ2

w2
0

)
e

1
2 − z2

2w2
0

+ia(t)
, (19)

where k = k1k2, a = a1 + a2 and ρ2 = x2 + y2.

4. The form of the 3D spatial soliton clusters

We note that the novel 3D spatial solitons in equation (19)
are determined by the three parameters l, n, and m. These
3D spatial solitons form clusters having some common
characteristics. We will present contour plots of the optical
field distributions in 3D for some specific values of the
parameters, choosing the initial conditions to be w0 = 1 and
P0 = 1.

(a) (b)

Figure 2. Intensity distributions of the radially symmetric soliton clusters when q = 1, m = 1. Here the parameter n is taken to have values
n = 0, 1, 2 from left to right. (a) Analytical solution of equation (19) for l = 0 (top) and l = 3 (middle). (b) Numerical simulation of
equation (3) for l = 0 (top) and l = 3 (middle). The bottom row presents the vertical view from directly above.

4.1. The general 3D spatial soliton clusters (m is a
non-negative integer)

4.1.1. Gaussian soliton clusters (m = 0). When m = 0
one obtains the Gaussian soliton clusters. In figure 1 a
comparison of the analytical solution with the numerical
simulation with different n and l for the Gaussian soliton
clusters is presented. Numerical solution of equation (3) is
performed to ascertain the stability of soliton clusters and to
compare with the analytical solution. As expected, no collapse
is seen [11], and excellent agreement with the analytical
solution is obtained. Strikingly, there are l-layer ellipsoids
along the vertical (z-axis) direction. The larger the n, the
longer the ellipsoid’s major axis length. The maximum optical
intensity is located at the outside layer ellipsoids, along the
vertical direction. Obviously, when all of the three parameters
are zero, the soliton forms a sphere which is called the
fundamental Gaussian soliton in the 3D space.

4.1.2. Radially symmetric soliton clusters (q = 1, m > 0).
For m > 0, in the limit q = 1 there exist radially symmetric
soliton clusters. In figure 2 we show some properties of the
radial soliton clusters. It is seen that for the same m, the
larger the parameter n, the thicker the cluster along the vertical
direction. The optical intensity is zero at the central point
(x, y, z) = (0, 0, 0). The soliton distribution does not depend
on the azimuthal angle.

As seen in figures 1 and 2, the Gaussian soliton clusters
and the radially symmetric soliton clusters display a well-
defined symmetry. The physical origin of the phenomenon
can qualitatively be understood from the nature of nonlocality.
Nonlinear nonlocality here means that the NL polarization of
the medium has the symmetry of the electric field. Owing
to the additional assumption of strong nonlocality, resulting
in a harmonic potential, the distributions of the optical field
and the intensity are obviously independent of the azimuthal
angle.

4



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 025402 W-P Zhong et al

(a) (b) (c)

Figure 3. Top row: soliton cluster intensity distributions with different parameters. Bottom row represents the vertical view from directly
above. The parameters are taken as follows: (a) n = 3, l = 0, m = 5; (b) n = 2, l = 1, m = 4; (c) n = 1, l = 2, m = 3 from left to right,
respectively.

4.1.3. Multipole soliton clusters (q = 0, m �= 0). In the
limit q = 0 and for m �= 0, we observe multipole soliton
clusters with different parameters (n,m, l). These multipole
solitons contain single-layer necklace soliton clusters (n = 0,
m �= 0) and multi-layer necklace soliton clusters (n positive
integer, m �= 0). In figure 3 we present some examples of the
multipole soliton clusters.

Interesting structures are seen for the multipole soliton
clusters in 3D. We find that the larger the parameter m, the
larger the necklace radius. It is seen that the distributions
change regularly with the azimuthal angle. When m is large
enough, the ellipsoids form a necklace soliton ring. The
number of ellipsoids in each layer is decided by m, and the
layer number is decided by n, in the horizontal direction.
These multipole soliton clusters have 2m(n + 1)(l + 1)

ellipsoids, and form n + 1 necklace layers in the horizontal
plane and l + 1 layers in the vertical direction.

These characteristics can be explained easily. In a strongly
nonlocal NL medium, the refractive index is determined by
the intensity distribution over the entire transverse coordinate
space, and under proper conditions the nonlocality can lead to
an increase of the refractive index in the overlap region, giving
rise to the formation of multipole solitons. Note that when the
nonlocal response function is much wider than the beam itself,
the range of nonlocality in the medium is very large and the
width of the refractive index distribution greatly exceeds the
width of an individual light spot.

4.2. Shell soliton clusters (0 < m < 1, a non-negative
fraction)

For q = 0, 0 < m < 1 a non-negative fraction, and l equal to
n, we show in figure 4 some examples of optical field intensity
distributions, which we call ‘shell soliton clusters’. They
display an internally layered structure. As seen, the larger the
parameter n, the larger the cylinder length along the vertical
direction. When m → 0 they form an ellipsoid.

For q = 1, m > 0 (m is a fraction less than one) and
l identical with different integers n, we show in figure 5 the

Figure 4. Comparison of optical field intensity distributions for
q = 0, l = 0, with different m (0 < m < 1) and integer n. Here the
parameter n is equal to 0, 1, 3 from top to bottom.

Figure 5. Optical field intensity showing four, three and two layers
when q = 1, l = 0, m = 1

2 and different n. Bottom row is a
cross-section through z = 0, which clearly displays the shell
structure.

optical field intensity distribution for m = 1
2 and different n.

They form the shell soliton clusters, consisting of multiple

5
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layers. As seen, the larger the parameter n, the thinner the
cylinder thickness along the vertical direction and the greater
the radius of the internal ring. The optical field consists of four
layers, three layers and two layers, respectively, depending on
n = 0, 1, 3.

5. Conclusion

We have studied 3D self-similar spatial soliton clusters in
strongly nonlocal media, both analytically and numerically.
An analytical solution has been obtained, and numerical
simulation has been performed, to confirm the stability of
solutions. We found that robust 3D spatial soliton clusters
exist, even though the starting strongly nonlocal SE is linear.
It should be pointed out that the nonlinear polarization of media
has the symmetry of the electric field, due to strong nonlocality.
The distribution of the optical field is then independent of the
azimuthal angle. Under proper conditions, the nonlocality
leads to a change of the refractive index in the overlap region,
giving rise to the formation of three-dimensional Gaussian
solitons, radially symmetric solitons, multipole solitons, and
shell solitons.
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