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Abstract: We demonstrate the generation of large two-dimensional soliton lattices and 
investigate their waveguiding properties for red and infrared wavelengths. The control of 
these lattices is demonstrated, exploiting coherent and incoherent soliton interaction 
features. For applications in bidirectional waveguiding, which is of interest in self-adjus-
tment of photonic devices, we investigate the formation of spatial solitons by counterpro-
pagating beams, including colliding coherent solitons and bidirectional vector-solitons. 
The question of stability of these different configurations is addressed and dynamic 
scenarios are reported. 
OCIS codes: 190.0190 (General); 190.4420 (Nonlinear optics, transverse effects in); 190.5330 
(Photorefractive nonlinear optics); 190.5940 (Self-action effects); 190.5530 (Pulse propagation and 
solitons).  

Introduction 

Adaptive waveguides are of particular interest in all-optical information processing due to their potential to 
realize large arrays as well as many configurations that allow different interconnection schemes. Optical 
spatial solitons have been proposed for these applications owing to their ability to guide waves and their 
interaction capabilities, and demonstrations as waveguides [1], as directional couplers [2], light-induced Y 
and X-couplers and beam splitters [3] have proven this potential. In addition to these one- or two waveguide 
configurations, which involve only a limited number of spatial solitons, the parallel propagation of several 
spatial solitons – so-called soliton pixels, soliton arrays or soliton lattices – have been suggested for appli-
cations in information processing [4,5]. Recently, several demonstrations showed that large arrays of spatial 
solitons can be formed in parametric amplifiers [6] or in photorefractive media for coherent [7,8], and 
incoherent solitons [9]. Moreover, they have been suggested for image reconstruction applications [7,10].  
In this contribution, we combine the features of spatial photorefractive solitons to form stable constituents 
during interaction and large pixel-like lattices with waveguiding features. Thereby, we realize waveguiding 
in large arrays of soliton lattices at red and infrared wavelengths, and achieve control of these lattices by 
phase-dependent interactions for both, copropagating and counterpropagating solitons. Most interaction 
configurations have been realized up to now between solitons that co-propagate in the nonlinear material. 
After having been investigated theoretically already some time ago [11], it was only recently that 
counterpropagating beams have been considered in photorefractive materials for the case of one transverse 



dimension [12,13].  However, configurations of counter-propagation are of high application potential in 
bidirectional, self-adjustable interconnections of arrays of waveguides. Here, we demonstrate the formation 
and interaction of complex arrays of solitons in the counter-propagation geometry for coherent interactions.  

Lattices of spatial solitons 

To create large two-dimensional lattices of photorefractive solitons, the conditions for stable and non-inter-
acting propagation need to be defined. A crucial point in the parallel propagation of photorefractive spatial 
solitons is their anisotropic mutual interaction [14]. Because the refractive index modulation induced by 
each single soliton reaches beyond its effective waveguide, phase-dependent coherent as well as separation-
dependent incoherent interactions as repulsion, attraction or fusion may appear between neighbouring array 
elements [15]. These interaction effects also affect the waveguiding features in a soliton channel. Therefore, 
the parallel propagation of a multitude of solitons can only be achieved if the separation is carefully chosen 
in such a way to minimize all forms of interactions. In our experiments, we determined the critical soliton 
distance, at which interaction occurs and fixed the distance to a value that is beyond this limit.  
 

To create lattices of solitons in a photorefractive crystal, the typical setup of soliton formation was modified 
in such a way that the laser beam derived from a frequency-doubled Nd:YAG-laser emitting at λ = 532 nm 
illuminates a spatial light modulator which imprints the image of a spot array onto the beam (see fig. 1). 
The spatial light modulator in turn is imaged onto the front face of a photorefractive SBN60:Ce crystal (5 x 
5 x 20 mm3, with the propagation direction along the 20 mm axis as in typical soliton formation 
experiments). In order to exploit the dominant electro-optic coefficient r33 of our SBN probe, the incident 
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Fig. 2: Realization of a 9 x 9 spatial soliton lattice. a) Front face of the photorefractive SBN-crystal (image of the spot array 
created by a spatial light modulator, b) interference pattern due to linear propagation at the exit face of the crystal, c) and d) 
array of 81 spatial solitons at the exit face of the crystal after 5 and 30 min of formation, respectively.  
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Fig. 1: Schematic setup for the creation, waveguiding and control of large lattices of photorefractive screening solitons.



laser beam was linearly polarized parallel to the c-axis of the crystal. For the creation of soliton lattices and 
testing of its waveguiding properties, regular patterns of up to 25 x 25 spots each with a diameter of about 
20 µm and an intensity of about 110 nW are imaged onto the front face of the crystal (Fig. 2a). In the linear 
case - without applied electric field - the beams diffract on their way through the crystal and display a 
typical interference pattern (Fig. 2b). Applying an external electric field of about 1 kV/cm and using a 
supplementary white light source to create an artificial dark conductivity in such a way to achieve spatial 
photorefractive screening soliton formation, self-focusing forms lattices of solitons (Fig. 2c).  
To obtain propagation without mutual interaction, we take care that the initial distance between single 
solitons is just large enough to prevent soliton interactions. Therefore, the horizontal and vertical initial 
separations are chosen to be ∆x = 100 µm and ∆y = 124 µm. Slight deviations from the symmetry are due to 
inhomogeneities of the crystal. A distance smaller than the critical distance for coherent interactions 
between the solitons in either case would cause the solitons to interact and eventually fuse due to their own 
mutual attractive force.  Such a situation is shown in Fig. 3, where the distance was reduced by enhancing 
the number of solitons in the same transverse area.   

 
In our numerical simulations based on the paraxial approximation to the propagation of an optical beam in 
an anisotropic saturable medium, a similar behaviour was found: parallel propagation of solitons with a 
given mutual distance can be adjusted to be almost without interaction (Figs. 4a, 4b), whereas separations 
below the critical lengths lead to fusion of  columns of beams (Figs. 4c, 4d) in the array. In order to achieve 
a closer package in such a soliton array while maintaining propagation without interaction, the phase 
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Fig. 3: Interaction of solitons in large lattices for distances smaller than the critical distance of independent propagation. 
a) 12 x 12 solitons, with ∆x = 70 µm, ∆y = 85 µm, b) 17 x 17 solitons, ∆x = 60 µm, ∆y = 75µm, c) 25 x 25 solitons, ∆x = 
50 µm, ∆y = 65 µm (all values ± 3 µm due to pixel mismatch between input configurations and the SLM device).  

(a) (b) (c) (d)

Fig. 4: Numerical simulation of large soliton lattices for z = 35 mm of propagation, an electric field of 900 V/cm with an 
effective electrooptic coefficient of 210 pm/V, and an initial mutual distance at z = 0 of a) ∆x = ∆y = 80 µm, b) ∆x = ∆y = 
70 µm, c) ∆x = ∆y = 60 µm, d) ) ∆x = ∆y = 50 µm. 



relationship between different beams of the array 
can be exploited. By engineering the relative 
phases between different rows of beams to 
alternate between 0 and π at the entrance face of 
the material, a propagation with reduced 
interaction can be stabilized. Fig. 5 shows a 
situation for a larger electric field and a smaller 
separation distance between solitons in the lattice. 
However, the resulting interaction is lower due to 
the phase relationship between neighbouring soli-
tons that prevents interaction.   
 
 

Waveguiding in soliton lattices 

To test for the waveguide properties of the single channels of such a soliton array, the wavelength selectivity 
of the photorefractive effect in our SBN:Ce probe [16] is exploited to scan the soliton array with an intense 
probe beam without significantly destroying single soliton channels. The wavelength of the probe beam was 
either λ = 633 nm or λ = 1550 nm. Positioning the red or infrared probe beam successively to the positions 
of the previously induced solitons on the crystals front face, we find the probe beam to be guided in each of 
the soliton channels solely. Scans of this array with the red or infrared probe beam are shown in Fig. 6.  To 
obtain information of the complete array, every single channel is scanned separately, and the individual 
images are superimposed electronically. Infrared beams have been visualized using an infrared converter 
system [17].  
Naturally, larger arrays of solitons can also be formed. Their number is mainly limited by the aperture of the 
photorefractive crystal and the resolution of the inducing spatial light modulator. Examples of different 
soliton lattices that can be achieved are shown in fig. 7, where the distances between neighbouring solitons 
where chosen to ensure non interacting solitons. In larger arrays, several applications of parallel soliton and 
waveguide formation can be considered. As an example, digitized images consist of large arrays of pixellike 
spots arranged on a square lattice. In the linear regime, such an image can be reconstructed only in a range 
that is limited by the depth of focus of the imaging optics due to the blurring effects of diffraction. 
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Fig. 6: Probing a soliton array by waveguiding a probe beam of a different wavelength in the individual soliton channel. a) 
soliton array formed at λ = 532 nm, b) probing the array with λ = 633 nm in individual soliton channels, c) soliton array 
formed at λ = 532 nm, d) probing a part of the array with λ = 1550 nm, visualized with an infrared-to-visible light 
converter [17]. The results are electronically added to show waveguiding of numerous solitons in the array simultaneously. 

(a) (b)  
Fig. 5: Stabilization of soliton lattices by phase engineering 
of the relative phases of the beams. a) Phase relationship at 
the entrance face of the nonlinear material (∆x = ∆y = 
35µm). b) Soliton lattice for z = 35 mm propagation (E =1,3 



However, if these arrays of spots are propagating in a 
nonlinear, solitonic regime, we are able to enlarge the range of 
focus depth to the length of the soliton formation, i.e. to the 
length of the nonlinear crystal. This idea [10] has also been 
demonstrated in our system with a regular pattern of 25 spots 
[8].  

 

 

 

Interaction in soliton lattices 

To use these soliton arrays for applications in information technology, it is highly desirable to have means 
of manipulating individual waveguides in order to combine different channels, separate them or induce 
energy exchange between them. For this purpose, well-known interaction scenarios of spatial 
photorefractive solitons can be exploited. Two different principles can be employed to induce these 
interactions in large soliton arrays. In the first approach, another beam can be created in the SLM 
configuration between the regular spots of the soliton array, thereby forming a soliton that has a relative 
distance to neighbouring solitons below the critical distance. Varying the phase of this soliton by changing 
the SLM steering voltage, phase-sensitive coherent or incoherent interaction that may lead to fusion or 
repulsion of different solitons can be realized. In a second approach which we utilize here, a supplementary 
control beam derived from the Nd:YAG-laser is focused onto the front face of the SBN crystal. While in 
this experiment the array solitons had an intensity of 55 mW/cm2 each, the separate controlling beam, 
which was positioned between two spots of the array, had an intensity of  about 160 mW/cm2. In fig. 8, the 
back face of the crystal with the uncontrolled array is shown. Once the control beam was positioned 
between the central lower two solitons and the electric field was applied the new soliton array formed. Due 
to the additional beam between the two lower central 
channels, the refractive index in between these 
channels is increased causing the two solitons to 
attract and eventually fuse. Fig. 8b shows the red 
probe beam guided in each channel of the controlled 
array separately (again single snapshots were added 
electronically). Here, the fusion of the two lower 
middle channels is obvious. Therefore, the case of 
coupling the probe beam into the central or the lower 
middle channel on the front face of the crystal leads to 
guiding it into the same output, respectively.  

Counterpropagating solitons 

So far, the formation and interaction of photorefractive screening solitons have been studied mainly in 
the co-propagation geometry. However, due to the application potential of counterpropagating soliton 
lattices as beam couplers, interest in experimental realizations of this configuration has grown recently 

(a) (b)  
Fig. 7: Examples of different configurations of 
photonic lattices induced by spatial 
photorefractive solitons. a) Hexagonal lattice 
with holes, b) square lattice with a row left out. 
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Fig. 8: Optical control of soliton lattices. a) 
Uncontrolled lattice, b) controlled lattice probed at λ = 
633 nm. The slight size mismatch of both figures is due 
to wavelength dependence of aberrations in the imaging 



[12,13]. Here, we develop a numerical description of the counterpropagating soliton configuration for 
one transverse dimension, taking into account the periodic modulation of the space field induced by the 
interference of the counterpropagating beams. The interaction of the two beams, which includes 
feedback and dynamical effects, makes counterpropagating solitons different from their copropagating 
counterparts.  Therefore, the resulting space charge field consists of two components, an unmodulated 
part E0 of the transverse component and a modulated part E1, which is proportional to the modulation 
depth m of the interference of both beams having the wave vector k. In order to describe the impact of 
these fields on the beam propagation, we formulate the space charge field in a normalized way relative 
to the externally applied electric field Eext 

 (1) 

Assuming a local, isotropic approximation of the space charge field and a saturable nonlinearity  
Esc = 1/(1+I) with I being the light intensity normalized relative to the background intensity, the 
temporal evolution of the space charge field is introduced assuming a relaxation-type dynamics  

 
            (2) 

with I0 = |F|2 + |B|2 and m = 2FB*/(1+I0), and the relaxation time τ of the crystal being inversely 
proportional to the total intensity. ε describes the relative coherence of the forward and the backward 
propagating beams, i.e. ε = 0 for incoherent and ε = 1 for coherent interaction. Inserting these 
conditions in the paraxial wave equation leads to the propagation equations for the forward (F) and 
backward (B) propagating beams. In the normalized form, setting x  → x/x0, z → z /LD, (F,B) → (F,B) 
exp(-iΓz) with the diffraction length LD = 2kx0

2, and denoting the constant (kn0x0)
2reff Eext by Γ, where n0 

is the refractive index of the nonlinear material, x0 is the  transverse beam waist, and reff is the electro-
optic coefficient, the propagation equations are given by 

       
        
                         (3) 

 
Solving these equations numerically, we find localized structures that are stationary in time and represent 
self-trapped waveguides. Fig. 9 shows the counter-propagation of two coherent Gaussian beams that are 
launched at different lateral positions. When the initial separation is less than four beam diameters, the 
individual solitons begin to interact. For a separation about two beam diameters, the interaction is strong 
enough for the beams to form a single waveguiding structure. Head-on collisions result in the formation of a 
counterpropagating vector-soliton as was shown in [12].  

(a) (b) (c)
 

Fig. 9: Counterpropagating self-trapped waveguide formed out of two coherent beams. a) Resulting spatial intensity dis-
tribution in steady state, b) right-propagating beam, c) left-propagating beam. The size of the data windows is 10 beam 
diameters in the transverse direction and two diffraction lengths in the direction of beam propagation. The initial 
integrated intensities are |F|2 = |B|2 =1, the coupling strength is Γ = 5. 
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The generation  of a photorefractive dipole-mode counterpropagating vector soliton is presented in Fig. 10 
(a-c). A dipole beam is launched from the left, and a power-matched, coherent single beam from the left. 
Such a bimodal counterpropagating soliton has already been theoretically predicted and found to be stable 
for Kerr nonlinearities [11,18]. If photorefractive nonlinearity in such a configuration is above a certain 
threshold, modulation instabilities in the longitudinal direction prevent soliton formation, leading to 
stationary localized structures. Fig. 10 (d-f) shows an example of such a situation with the same initial 
beams as in fig. 10 (a-c), but with a coupling strength that is around four times larger than before.  
Counterpropagating solitons also may form self-trapped structures that dynamically do not converge to a 
steady-state, especially when complex spatial structures counter-propagate for high nonlinearities. Fig. 11 
shows a situation where three in-phase beams propagate to the right, and two out-of-phase beams propagate 
to the left. Such a configuration represents a novel time- as well as z-dependent complex localized structure 
that can not be described by the usual steady-state theory of spatial solitons. Its z-dependence can be 
attributed to the general features of longitudinal waveguides, whereas the time-dependence is governed by 
the slow response of the photorefractive medium.  

(a) (b) (c)

(d) (e) (f)  
Fig. 10: Intensity distribution of  counterpropagating localized structures (a,d), created by the interaction of a left-propaga-
ting soliton (b,e) and a right-propagating dipole-mode beam (c,f). In the top row, a counterpropagating dipole-mode vector 
soliton is formed (Γ = 3,3), whereas in the bottom row a modulation instability develops (Γ = 12) and forms self-trapped 
waveguides. All other data as in Fig. 9. 
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Fig. 11: Unstable self-organized localized structure resulting after 116 time steps (a): three in-phase beams (b) entering 
the material from the left counterpropagate with two out-of phase beams propagating from right to left (c). The total 
power that enters to the left and to the right are equal, the coupling constant is given by Γ = 10. All other data as in fig. 9. 



Conclusion 

To summarize, we have discussed several aspects of interaction of multiple solitons for applications in all-
optical waveguiding and interconnects. We have presented the formation of large two-dimensional lattices 
of solitons that are able to guide light at different wavelengths. Moreover, a control of these channels is 
possible by exploiting different interaction features of coherent and incoherent photorefractive solitons. We 
have shown how to use a supplementary steering beam in order to fuse selected solitons in the soliton 
lattice. In the counterpropagating soliton geometry, the inclusion of time-dependent effects is crucial for 
understanding the formation of waveguide structures. We demonstrated by our numerical analysis the 
generation of a counterpropagating vector soliton, and presented a novel class of localized, non-solitonic 
stationary solutions. Moreover, dynamical states and the onset of longitudinal modulational instabilities 
were depicted. Experimental investigations to exploit these novel states and dynamical scenarios are 
currently in progress.  
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