
Volume 99A, number 6,7 PHYSICS LETTERS 12 December 1983 

A GENERALIZED NONLINEAR SCHRODINGER EQUATION 
AND THE MOTION OF INHOMOGENEOUS VORTEX FILAMENTS IN A FLUID 

Milivoj R. BELIe 
Institute of Physics, POB 57, 11001 Belgrade, Yugoslavia 

Received 9 August 1983 
Revased manuscript received 6 October 1983 

A generahzation of the nonlinear Schrodinger equation, arising in the analysis of the motion of mhomogeneous vortex 
filaments in a fired is treated by the method of twisted curves and an extended AKNS scheme. 

In a recent series of  articles [1,2] Balakrishnan has 
studied the generalized nonlinear SchrSdinger equation 
(GNLSE): 

X 

iS+(fu)" +nu=O, R -  f lul(flul)', (1) 

where dot denotes the temporal derivative, prime de- 
notes the spatial derivative, and u(x, t) is assumed 
complex. In ref. [1] an extended AKNS scheme is de- 
viced and applied to the solution of GNLSE, in ref. 
[2] this equation is connected with the following spin 
equation: 

• ^ I 1  

~ = f ' ~  x ~' + f~  x s , (2) 

where g = g(x, t) is a classical unit spin vector. The 
hamiltonian density giving rise to such an equation is 
of  the form: 

X 

1 ., g, x f f i g , . g ,  ~ c = ~ f ~  • +~  . (3) 

Another physical problem where GNI~E naturally 
arises is the motion ofirthomogeneous vortex filaments, 
when the circulation of  a vortex ~(x, 0,  

I'- fci'dl= f ( V X  &)'dA, (4) 
C A 

is assumed to be an arbitrary function P = F(x, t); C 
encircles the vortex, and A is the area enclosed by C. 
This situation seems realistic when viscosity and dif- 
fusion around the vortex is taken into account. The 
case when P is constant, as analysed in refs. [3,4] leads 
to the ordinary nonlinear Schrbdinger equation. 

A Frenet trihedron i,  fi, b is assigned to the space 
curve at(x, t) representing an isolated vortex, which is 
swept about in some consistent manner due to the 
fluid motion. We assume the curve ~ to be param- 
etrized by its own arc-length, so that 0t' = i. On the 
other hand, its velocity is approximately [4] 

= n(x, OK b , (5) 

where K (x, t) is the curvature of ~, and r/is a func- 
tional of  P. The spatial and the temporal derivative of  
the trihedron is given by [3,4] 

i '  dX i ,  l= = to x i ,  (6)  

and similarly for the normal a and the binormal b. In 
(6) d = r~ + Kb is the Darboux vector, r is the torsion 
of  at, and to = OJli + 6o2~ + w3b is the angular veloc- 
ity of  the trihedron. The integrability condition for 
the trihedron ixt = itx etc. leads to the system 3 equa- 
tions: 

~ =m~ + r m 2 ,  7:=601 - K m 2 ,  w'2=rm3-Kml ,  
(7) 

which, on the one hand contains many soliton equa- 
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tions [3,4] and on the other is connected with the 
ZS-AKNS two-component  scattering problem [5,6]. 
The integrability condition for Qt leads to 

--~/KT"h + (r/g)'b = ¢.o3t] - 6o2b. (8) 

Withthis choice for 6o 2 and co3, the last equation o f  
the system (7) provides 

w 1 = (rl~)"/K - rlr 2 , (9a) 

while the remaining two equations read: 

+ (~TKr)' + (~K)'r = 0 ,  (9b) 

÷ - [ ( n ~ ) " / ~  - n r z ]  ' - K ( n K ) '  = 0 .  ( 9 c )  

However, i f u  = Ke i° with o' = r and 77 = f i s  assumed, 
these two equations follow exactly when u is substi- 
tuted into the GNLSE. 

In order to treat GNLSE by the inverse scattering 
procedure, Balakrishnan presented in ref. [1] and ex- 
tension o f  the ZS-AKNS eigenvalue problem, in which 
the eigenvalue is allowed to become space and time 
dependent. As a consequence, a nonlinear evolution 
equation for the eigenvalue ~(x, t) resulted: 

i t  - ( f ~ ' +  2if~-2) ' = 0 .  (10) 

We note that if u = q e x p ( - 2 i J  "x ~) is substituted into 
GNLSE, the following equation is obtained at large 
distances: 

i~ + (½if '  + 2f~)"  - ( f~ '  + 2if~2) ' = 0 .  (11) 

So, for f constant, eqs. (10) and (11) are equivalent. 
Application of  the AKNS scheme with time-dependent 
eigenvalue [7] requires a solution of  eq. (10) which 
separates variables, 

~ (x,  t) = g ( x ) h ( t )  . (12) 

While evaluation of  h presents no problem, a bit more 
analysis is needed in the case o fg .  The remaining part 
o f  this letter is therefore devoted ftrstly to evaluation 
of  the function g, which is crucial in application o f  the 
extended AKNS procedure, and secondly to evaluation 
of  the (class of) functions f allowed by such a proce- 
dure. So, with the above choice for the solution o feq .  
(10), two equations follow for g: 

f g '  = Xy + X 0 , fg2 = lay + laO, ( I3)  

where X, X o, la, lao is constant, and y '  = g. Evidently 
these equations can hold only for certain functions 
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f ( x ) .  Considering (13) as a system of  equations for g 
and g' we obtain: 

g = -- la f ' /d ,  g' = la(f" + 2X)/d,  (14) 

where 

d = 2 f ( f "  + 2)t) _ ( f ' ) 2 .  (15) 

The allowed f ' s  come from the following equation: 

Idl = Cl(f')2 exp( fX2)~ / f ' ) ,  (16) 

with C 1 > 0 a constant. In general this equation is 
hard to handle. Only when X = 0 we easily recover the 
result quoted in ref. [1]. A way around is to first fred 
g. To this end we eliminate fbe tween  the two equations 
in (13), and considering g as a function of  y ,  obtain: 

g = C 2 Y A o e A Y ,  (17) 

with Y = lay + la0, A0 = (X0la - )~u0)/la 2, A = X/la 2, and 
C 2 a constant. T h u s f i s  known as a function of  y ,  

f = C3 y1-2Ao e-2AY, (18) 

and the actual dependence y (x) is given implicitly 
through 

laC2AX-Ao(x - x 0 )  = 3,(1 - A0, Ale),  (19) 

where x 0 is the root o f  Y, and 7(a ,z)  is the incomplete 
gamma function [8] : 

Z 
=- f e - t t  a-1 d t .  (20) qc(a, Z) 

0 
The case when la = 0 is treated in a similar manner. 

Once g and h are found, an analysis o f  the direct 
and inverse scattering problem, as given for example 
in refs. [1,4,7] leads to the soliton-like solutions of  the 
generalized nonlinear Schr6dinger equation. This anal- 
ysis will not be repeated here. 
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