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A generalization of the nonlinear Schrodinger equation, arising in the analysis of the motion of inhomogeneous vortex
filaments in a fluid 1s treated by the method of twisted curves and an extended AKNS scheme.

In a recent series of articles [1,2] Balakrishnan has
studied the generalized nonlinear Schrodinger equation
(GNLSE):

it +(fu) +Ru=0, R= [ lul(flul), M

where dot denotes the temporal derivative, prime de-
notes the spatial derivative, and u«(x, f) is assumed
complex. In ref. [1] an extended AKNS scheme is de-
viced and applied to the solution of GNLSE, in ref.
[2] this equation is connected with the following spin
equation:

§=18X8 +fEXs", ?)

where § = §(x, f) is a classical unit spin vector. The
hamiltonian density giving rise to such an equation is
of the form:

X
JC=%fs*'-s"+§ff’§'-s". €))

Another physical problem where GNLSE naturally
arises is the motion of inhomogeneous vortex filaments,
when the circulation of a vortex a(x, ),

r= fa-ar= [(vx &)-d4, @
C A
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is assumed to be an arbitrary function I' = I'(x, 1); C
encircles the vortex, and A is the area enclosed by C.
This situation seems realistic when viscosity and dif-
fusion around the vortex is taken into account. The
case when I'is constant, as analysed in refs. [3,4] leads
to the ordinary nonlinear Schrodinger equation.

A Frenet trihedron 7, 7, b is assigned to the space
curve a(x, ¢) representing an isolated vortex, which is
swept about in some consistent manner due to the
fluid motion. We assume the curve o to be param-
etrized by its own arc-length, so that @’ = #. On the
other hand, its velocity is approximately [4]

&=n(x, kb, ()
where k (x, ) is the curvature of &, and 7 is a func-

tional of I'. The spatial and the temporal derivative of
the trihedron is given by [3,4]

F'=dXi, Ff=oXf, ©)

and similarly for the normal 7 and the binormal b.In
(6) d = 7 + kb is the Darboux vector, 7 is the torsion
of @, and @ = w,# + w,it + w3b is the angular veloc-
ity of the trihedron. The integrability condition for
the trihedron #,, = #,, etc. leads to the system 3 equa-
tions:

Wy = TW3— KW,
@)

which, on the one hand contains many soliton equa-

R=w3+Twy, T=w]—kwy,
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tions [3,4] and on the other is connected with the
ZS-AKNS two-component scattering problem [5,6].
The integrability condition for & leads to

—nkTh + (k) b = wah — wyb . 8)

With this choice for w, and w3, the last equation of
the system (7) provides

wy = ()" Ik —n12, (92)
while the remaining two equations read:

K+ (kr) + (k)T =0, (9b)
7 — [(k)"k —072]’ — k (k) = 0. (9<)

However, if u = kel with ¢’ =7 and = f is assumed,
these two equations follow exactly when u is substi-
tuted into the GNLSE.

In order to treat GNLSE by the inverse scattering
procedure, Balakrishnan presented in ref. [1] and ex-
tension of the ZS-AKNS eigenvalue problem, in which
the eigenvalue is allowed to become space and time
dependent. As a consequence, a nonlinear evolution
equation for the eigenvalue ¢(x, ) resulted:

it —(ft'+2if82)' =0. (10)
We note that if u = q exp(—2if*£) is substituted into

GNLSE, the following equation is obtained at large
distances:

i+ Gif' +279)" — (FE +2if2) =0. (1)
So, for f constant, egs. (10) and (11) are equivalent.
Application of the AKNS scheme with time-dependent

eigenvalue [7] requires a solution of eq. (10) which
separates variables,

§(x, 0 =g()n@). 12

While evaluation of 4 presents no problem, a bit more
analysis is needed in the case of g. The remaining part
of this letter is therefore devoted firstly to evaluation
of the function g, which is crucial in application of the
extended AKNS procedure, and secondly to evaluation
of the (class of) functions f allowed by such a proce-
dure. So, with the above choice for the solution of eq.
(10), two equations follow for g:

=Ny, felEpwy g, (13)

where \, Ny, i, y is constant, and y’ = g. Evidently
these equations can hold only for certain functions
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f(x). Considering (13) as a system of equations for g
and g’ we obtain:

g=—uf'ld, g=up(f"+20/d, (14)
where

d=2f(f"+20) - (. (15)
The allowed f's come from the following equation:
ld| = Cy(f)? exp(f*2M/f"), (16)

with C; > 0 a constant. In general this equation is
hard to handle. Only when A = 0 we easily recover the
result quoted in ref. [1]. A way around is to first find
g.To this end we eliminate f between the two equations
in (13), and considering g as a function of y, obtain:

g=CyYhoeAY | 17

with ¥ =y + gy, Ag = (\gut — Mtg)/u?, A = Nu?, and
C, a constant. Thus f'is known as a function of y,

f=Cy Y1“2A0e‘2AY, (18)

and the actual dependence y(x) is given implicitly
through

MczAl—AO(x —xg) =7(1 = Ay, AY), (19)

where x is the root of Y, and y(, z) is the incomplete
gamma function [8]:
Z
v(a,z) = f e-tre-14s. (20)
0

The case when p = 0 is treated in a similar manner.

Once g and / are found, an analysis of the direct
and inverse scattering problem, as given for example
in refs. [1,4,7] leads to the soliton-like solutions of the
generalized nonlinear Schrddinger equation. This anal-
ysis will not be repeated here.
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