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Symmetries of two-wave mixing in photorefractive crystals
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We consider symmetries of two-wave mixing equations in photorefractive crystals, using group theoretical
methods. Symmetry groups for both the equations and conserved quantities are determined, and the corre-
sponding generators are written explicitly. Results obtained for plane-parallel polarized two-wave mixing are
used to introduce the method for solution and the form of solutions for cross-polarized two-wave mixing.

Two-wave mixing (2WM) in various nonlinear media
is the basic wave mixing process in nonlinear optics.'
It is the process by which the writing or reading of
holograms proceeds or by which the coherent trans-
fer of energy from one laser beam to the other is
achieved. Optical phase conjugation2 by four-wave
mixing can be thought of as a composition of a pair
of 2WM processes: a two-wave write-in and a si-
multaneous two-wave readout of volume holograms.

We present an elementary symmetry analysis of
slowly varying envelope wave equations describing
steady-state 2WM in photorefractive crystals. The
symmetries of conserved quantities as well as of the
equations are established. The method is introduced
by treating the standard 2WM with parallel polar-
ization, and then it is applied to the (hitherto' con-
sidered unsolved) 2WM with crossed polarizations.

The processes of interest are depicted in Figs. 1
and 2. Figure 1 displays 2WM of two plane-
polarized laser beams, Al and A2, in a photo-
refractive crystal. This process is described by the
following set of wave equations:

IA,'= FA,2 - aIA,, IA2' = - F*A2 1` - aIA2

for the transmission geometry (TG) and

IA1'= FA,12 - aIA1, IA 2' = F*A21` + aIA 2 (2)

for the reflection geometry (RG). I = I, + I2 is the
total intensity, r is the wave coupling constant (com-
plex in general but real in photorefractive materials),
and a is the linear absorption coefficient. The
prime denotes a spatial derivative along the propaga-
tion direction, and the asterisk stands for complex
conjugation.

Figure 2 depicts 2WM with crossed polarizations
in cubic crystals with point symmetry 43m. This
process is described by the equations"3

IA,' = rBQ + aIA,,

IB3' = r*AQ*- aIB3,X

IA,' = FB3Q + aIA,,
(4a)

IBP' = F*AQ* - aIB,
(4b)

for the RG. A,, A, and B3, BP are the orthogonally
polarized components of the two beams impinging
upon the crystal, Q = ASBS* + ApBp* is the ampli-
tude of the grating induced by the cross-polarized
electric field components (+ for the TG; - for the
RG), and I = IA + IB is still the total intensity. Par-
allel couplings in Eqs. (3) and (4) are neglected.
Such a wave mixing process is possible, for example,
in GaAs when the crystal orientation prevents paral-
lel coupling.3 However, our method can be general-
ized to other mixing geometries and coupling
mechanisms.4 The theory of cross-polarized 2WM
has been developed by Yeh et al.3

Our program is as follows. Writing Eqs. (1) and
(2) in matrix form, we establish their group symme-
try. The symmetries of both the equations and con-
served quantities are established by finding the
appropriate groups and group generators. The
knowledge of symmetries facilitates the solution of
equations of interest. The method is generalized
to Eqs. (3) and (4) and used to pave the road to
their solution.
neglected.

Let us form

In what follows, linear absorption is

the fundamental representation

IA) = 1 (5)

so that Eqs. (1) and (2) can be written in matrix form:

IA)' = mlA), (6)

where

IA,' = -FBpQ - aIA,,

IBs' = r*ApQ* - aIB3,

IA,' = -FB3Q - aIA,,
(3a)

IBp' = r*AQ* - al

for the TG and by

M=[=* A]

and Au = FAlA2*/I. The upper sign is for the TG;
IB, the lower, for the RG. From quantum mechanics we
(3b) recall that an equation jy)' = mpli) has an integral

of motion (fnl'k) if there exists a constant matrix n
such that nm,& + m,6tn = 0, where a dagger denotes
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Fig. 1. Two-wave mixing with plane-polarized beams:
(a) TG, (b) RG. Parallel lines depict gratings.

where oj are the Pauli matrices. This means that a
variation of IA) satisfies

5IA) = ieoJA) + ieojIjA) + (e4 + ie5)0.2 1A*).

Thus the conserved quantity possesses a six-
parameter symmetry SU(2) X U(1)3. The U(1)
symmetries go with the parameters eo, e4 , and E5,

while the remaining three go with SU(2). The cor-
responding six generators can be written down ex-
plicitly by using Eqs. (10) and (12).

These symmetries do not have to coincide with the
symmetries of the equations of motion [Eqs. (1)].
The symmetries of Eqs. (1) are determined by writ-
ing an evolution operator for this equation5:

f = FA,128A, - F*A21laA2 + F*Al*I2aA,* - fAS*IlaA2*
(14)

and by finding all operators L satisfying the equation

I[f L] + L[I]f = 0,

where [,] denotes a commutator. Operators L are
again sought in the most general linear form
[Eq. (10)]. After some algebra, one arrives at the fol-
lowing generators:

As

Fig. 2. 2WM with cross-polarized beams: (a) TG, (b) RG.

an adjoint matrix. Here

n+= [ 2] (8)

and the conserved quantities are

q± = I,1 I2. (9)

They are connected with energy conservation. To
simplify the notation, we drop the ± and just follow
the TG.

Conserved quantities are related to the sym-
metries of the system. We are looking for the sym-
metries of these constants, i.e., for operators of
the form

Lo = ADaA, + A2aA2 + c.c.,

Li = i(AiaA, - c.c.),

L2= i(A20A2 - c.c.).

(16a)

(16b)

(16c)

The first generator represents the dilational sym-
metry; the other two, the freedom in the choice of
initial phases of the fields A, and A2. The total
symmetry of the dynamical equations [Eqs. (1)] is
thus R X U(1) 2 .

The situation with respect to the reflection case
changes inasmuch as the SU(2) symmetry group of
the integral of motion changes into SU(1, 1). This
means that, in the presumed solution for A, and A2,
which takes into account the form of the conserved
quantity [Eq. (9)], the sin and cos functions in the TG
should be replaced with the sinh and cosh functions
in the RG. However, this information cannot be
used to construct the unknown solutions of the RG in
2WM with crossed polarizations from the known so-
lutions of the TG.' Let us consider in some detail
the 2WM equations with crossed polarizations.

There are now four field components, which can be
organized into two fundamental representations:

1 = (Ajaij + Aj*bij)aAi + c.c.

that would satisfy the equation

lq = 0.

(10)

(11)

Such operators form the set of generators of the
symmetry group and constitute the appropriate Lie
algebra of the system. In Eq. (10), summation over
repeated indices is assumed; c.c. stands for complex
conjugation. With a little effort it is found that

a +i(e0 + E3) iel + 62 1
a=oI i (12a)

a~ieo~ijo~- Lie -e2 i (EO -E3)J

I,) = A9) I2) (A= ) (17)

Equations (3) and (4) can be rewritten as

1ql)y = ml,), 112)' = m1412), (18)

where m has the same form as above, with ,.t =
rFQ/I. There are now two n matrices:

(19)

Written in this form, 2WM with crossed polariza-
tions resembles a 4WM process. Therefore we apply
the methodology developed earlier4 for 4WM pro-

(a)

(b)

(13)

"" A2

(15)

(12b)b =(64 + iIE5)0..2 ,

1 0 0 1n, � n =
0 ±1 _1 0
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cesses. The conserved quantities are

(qiIn+,Iqi) = A3A,* + BpBp* = cl,

(021n+l1X2) = ApAp* + B3B3 * = C2X

(q12In+I'1'i) = A3 Ap* + B,*Bp = C3 ,

(p 2*In~qii) = ApBp - A3B3 = C4

for the TG and

(lqiInIfql) = A3A3* - BpBp*= bi,

(q12InIqf 2) = ApAp* - B3B3* = b2,

(qJ2In14',) = ASAp* -B*Bp = b3,

(0 2*In~qii) = ApBp - AsBs = N

tors for the RG when F is real and an additional two
(20a) for the TG when F is imaginary. One can similarly

derive the symmetries of conserved quantities. It
(20b) suffices to note that the nontrivial symmetry (sub)-

groups remain as SU(2) and SU(1, 1). Using this
(20c) symmetry information, one can solve Eqs. (3) and (4)

(20d) in quadratures if one assumes a solution of the form

(21a)

(21b)

(21c)

(21d)

for the RG. Similar relations are derived in Ref. 3.
Another quadratic conserved quantity is found for
the RG when F is real (which is the case here):

b3= AsAp* - BSBp*. (21e)

A formally analogous quantity for the TG

C3 = AsAp* - BsBp*, (20e)

is constant when F is imaginary (which is of no inter-
est here). Also, not all the conserved quantities are
independent. It is easy to check that

1c312 + Ic412 = clc2 , (22a)

Ib 312
- _b 412 = bib 2 . (22b)

Further, there exist higher-order (quartic) conserved
quantities, notably for the TG:

(IA - IV) + 4R12 = const. (23a)

and for the RG:

(IA + IB)2 - 4IR12 = const., (23b)

where IA = IA, 12 + IAp12 , Ib = IB312 + IBpI2, R =
ABp* + B,*Ap. For real F and RG (or imaginary r
and TG) the modulus of the grating amplitude IQI 2 is
also constant. Unlike the case of true 4WM,4 these
quantities cannot be used for an obvious integration
of Eqs. (3) and (4).

A brute-force method based on Eq. (15) reveals
that there are four independent generators for
Eqs. (3) and (4). There are two additional genera-

As =c, /2 cos a, exp(i,81),

Ap = C2
1/2 cos a2 exp(if32),

B3 = C2
1/2 sin a2 exp(iy 2),

Bp = c,'/2 sin a, exp(iyi)

for the TG and

A3 = bi,"2 cosha, exp(iG3,),

Ap = b2 12 cosh a 2 exp(i13 2 ),

B3 = b2
1/2 sinh a2 exp(iy 2),

Bp = b ,2 sinh a, exp(iyi)

(24a)

(24b)

(24c)

(24d)

(25a)

(25b)

(25c)

(25d)

for the RG. The space of new variables (al,,13, Y1)
and (a 2, ,12, Y2) can be visualized as a direct product
of two 3-spheres (TG) or 3-hyperboloids (RG). Not
all these variables are independent. With the use of
conserved quantities, and by solving one of Eqs. (3)
or (4) explicitly, a solution in quadratures is ob-
tained. It turns out that all variables in Eqs. (24)
and (25) can be expressed in terms of a combination
u = a, + a 2, and the explicitly solved equation
yields a relation z = f(u).
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