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The bistable system consists of a unidirectional ring cavity containing off-resonance saturable two-level atoms. Fourier 
transform techniques permit an efficient solution of the free-space and medium propagation equations. Dynamic outputs 
showing critical slowing down and overshoot switching explicitly display the role of diffractive coupling in a bistable device. 

1. Introduction 

Optical bistability is now a well established phen- 
omenon having been experimentally observed in both 
intrinsic and hybrid devices [ 11. Most theoretical 
models have been confined to a plane-wave analysis 
[2 1, often in the mean-field limit. A few authors [3] 
have included transverse dependencies of the input 
beam by considering a single mode or a finite mode 
expansion. Most notable of the latter is the work of 
Marburger and Felber who consider a single trans- 
verse gaussian mode and choose the boundary condi- 
tions to match the wavefront curvature. These 
authors also assume such a high-finesse cavity, that 
the forward and backward powers in the cavity are 
taken equal. They conclude that self-focusing can re- 
duce the threshold for bistability. Ballagh et al. [3] 
also consider a single transverse mode and make the 
mean-field approximation in order to get analytically 
tractable results. Their results are in better agreement 
with the gaussian-beam experiment of Sandle and 
Gallagher [4] than plane-wave solutions. 

The work the closest to our own is that of 
Rosanov and Semenov [S] which we discovered after 
our present results. Their model of dispersive optical 
bistability is a Kerr nonlinearity with no saturable 
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absorption. They do not treat propagation through 
the nonlinear medium, which they assume to be con- 
fined to a single thin sheet. They do employ a one- 
dimensional fast Fourier transform and treat the very- 
large-Fresnel case, finding radially dependent switch- 
ing and avoiding high frequency spatial oscillations by 
filtering. 

In the following, we consider a unidirectional ring 
cavity configuration with a nonlinear absorbing two 
level medium. No mean-field approximation is made, 
and our solution technique rigorously includes all 
relevant transverse (confined here to one linear di- 
mension x) and longitudinal ring-cavity modes. A 
saturable homogeneous two-level absorber is assumed 
but the laser-atom detuning is so large that the opti- 
cal bistability is primarily dispersive although a 
finite saturable absorption is always present. Device 
switch-on (-off) intensities are calculated for two 
Fresnel numbers and compared with the plane-wave 
results. Dynamic outputs showing critical slowing 
down and overshoot switching explicitly display the 
role of diffraction in a bistable device. 

2. Method of solution 

We solve the coupled Maxwell-Bloch equations in 
the limit of fast longitudinal and transverse relaxations 
of the atomic medium. The resulting wave equation, 
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in the paraxial ray approximation, describing propaga- 
tion though the nonlinear medium can be written [6] 

[ 

a i(ln 2)V, 
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where the source (polarization) term on the RHS is 
derived from the steady-state Bloch equations. The 
scaled variables p and 5 are defined in terms of the 
original x, y, z Cartesian coordinates as follows: p = 
g~/wu +j’/w,-,; t = z/L.?. The transverse laplacian is 

v! = w$a2/ax2 t a2/ay2). 

~2 is the total path length, w. is the minimum beam 
waist at the input mirror, and the Fresnel number is 
defined as F = wi (ln 2)/L!?. The off-resonance “ef- 
fective” absorption per pass, (IL, is defmed as 

CY = (uo/( 1 + A2), A = (w - aab)/rL, 

and o. is the on-resonance field absorption coefficient. 

m(l(p, {)) = (1 t iA) I(P, 5) - 
1 +A2 +I(p, 5) I 

is the nonlinear saturable term including absorption 
and refraction. A systematic derivation of eq. (l), 
showing it to be accurate to lowest order in h/ 
(27mowo) is given in refs. [6-8] ; these authors con- 
clude that eq. (1) should be an excellent approxima- 
tion for all problems at optical frequencies. 

We note in passing that our problem with the ring 
cavity boundary conditions applied, corresponds pre- 
cisely to the limit studied recently by Ikeda [9] in 
the plane-wave approximation. Indeed, we have ob- 
served additional instabilities (bifurcation sequences) 
on the normally stable branches in appropriate limits, 
and these will be the subject of a separate publication 
[lo]. In the present article we analyze conventional 

bistable behavior by choosing our parameters approp- 
riately. 

Our solution of eq. (1) follows in the spirit of re- 
cent work on unstable resonators (amplifiers) in refs. 
[6-81 and [ 111. We now summarize briefly the main 
points. The field propagation in the ring cavity can be 
divided into (a) free-space propagation in which dif- 
fraction is described by the solution of the homogen- 
eous wave equation 
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and (b) nonlinear medium propagation requiring the 
solution of eq. (1). Solving eq. (2) using Fourier 
transforms allows us to write a free-space propagator 

(FSE) 

5(p, 5) = o?T)-l exp(-ii ~2SWX(p9 (3, (3) 

where (FT)[(FT)-l] refers to the two dimensional 
Fourier transform [inverse]. Eq. (3) can be rapidly 
solved for an arbitrary input field,&@, 0) by using a 
fast Fourier transform code (FFT). 

Returning to eq. (1) for the nonlinear medium 
propagation, we formally integrate it to yield 

5@, 0 = Tf exp[itV: - yj N(P, T’))dS;] 
0 

x 5(P, 0) (4) 

where Ts is a 5 ordering operator and Vf = [(ln 2)/ 

47rF] VF. The propagator in eq. (4) can be solved to 
third-order accuracy in c by rewriting it as [6] 

X exp [- $1 W(P, t’)) 4’3 
0 

X exp(4 iSV~)W4 0). (5) 

In practice, we split our medium up into “absorber 
sheets” of length A{ and solve the “difference” 
scheme 

UP, L+l) = exp($AD$) 

C 

P $+1 

X exp -.-?I ~V(P, i-‘N dt’ 
h 

I 

X ew(i iasV,2)S@, 5,). (6) 

Eq. (6) which is our nonlinear medium propagator, 
operatively entails the following three steps: (a) 
free-space propagate A{/2 into the absorber sheet, 
(b) calculate the nonlinear medium contribution over 
the A{ interval, and (c) free-space propagate the re- 
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maining A{/2 up to the next absorber sheet bound- 
ary. In summary, we calculate the initial internal 
field g@, 0) at the input mirror (et@, 0)), prop- 
agate it around the cavity using eqs. (3) and (6) 
taking into account the boundary conditions at the 
mirrors, return it to the input mirror, increment it 
by @&(p, 0), and repeat until the transmitted field 
&.(P) has reached a steady state. In this manner we 
can study the dynamic approach to the steady state. 

A major advantage of the computational scheme 
outlined above is that all relevant modes, transverse 
and longitudinal, are rigorously included in the treat- 
ment. No mean-field approximation is invoked (in- 
deed we observe that propagation effects can be sig- 
nificant) and arbitrary cavity geometries (e.g. curved 
mirrors) can be considered. The corresponding plane- 
wave result is obtained by dropping the laplacian 
terms in eq. (6) and using the “plane-wave propaga- 
tor” 

m(Z@, 5’)) dC’] &). (7) 

Finally, we note that the computational scheme 

adopted in refs. [6-81 and appropriately modified 
here for optical bistability represents a significant 
saving in computational effort over conventional 
numerical difference schemes. The use of the FFT 
scheme means that computational time goes as iV 
log N instead of N2 for conventional approaches (N 
represents the number of grid points). 

3. Results and discussion 

Due to memory and speed limitations of our com- 
puter, we have confined our preliminary calculation 
to a single transverse Cartesian dimension, i.e., Vz = 
w$a2/ax2 only. We see no reason to believe that in- 
clusion of the full two-dimensional diffraction term 
will lead to substantial differences in the results re- 
ported here. Table 1 summarizes our results for the 
plane-wave versus gaussian profile ring bistable de- 
vice. The parameters of the calculation are given in 
the caption. The main point to note from the table is 
that a significant intensity increase is required to 
switch the system to the upper branch as the Fresnel 
number is decreased. The percent transmission and 

Table 1 

Input profile F %Trans 

Planewave 21.8 5.5 16% 
Gaussian ;55 36.2 10.0 33% 
Gaussian 0.055 122.2 40.0 6% 

Gaussian values are beam-center values. 
Parameters used in calculation: oo = 100, A = 5, LNJ,J? = 0.15, 
where LNL is the length of the nonlinear medium. The laser 
cavity detuning @ is 0.4 (0.2/n times the free spectral range). 
The intensity reflection coefficient R of both input and output 
mirrors is 0.9. 

I, and ZJ. quoted in the table are for the on-axis in- 
tensity for the gaussian case. The increase in switch- 
on intensity Zt with decreasing Fresnel number is in- 
tuitively obvious: increasing diffraction in the gauss- 
ian beam leads to less efficient feedback in the device. 

Another important point to note is that the system 
switches on simultaneously out to very large radii in 
the transverse dimension (see fig. 1). 

Simultaneous switch-on out to a large radius was 

recently observed [ 121 in a GaAs Fabry-Perot etalon 
with F * 24 and in the limit of a medium relaxation 
slow compared with the cavity response, i.e., the re- 
verse of the present limit. 

b) 

‘O.O 7 

2.5 

TRANSVERSE COORDINATE x/w0 

Fig. 1. Transverse profiles, one each round trip, showing cri- 
tical slowing down (CSD), overshoot switching (0), and 
steady-state (SS) under the same conditions as table 1. (a) 
F = 0.6,11(x = 0) = 36.2 I,, and (.b) F = 0.06,11(x = 0) = 
122.2. Figs. 2 and 3 show the corresponding time dependences 
for the on-axis intensity. 
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Fig. 2. Dynamics of on-axis intensity showing critical slow- 
ing down and overshoot switching for F = 0.6 and II(x = 0) 
= 36.2. 

Figs. l(a) and (b) show the dynamical switching of 
the system to the high transmission branch for the 
cases F = 0.06 and 0.6, respectively. Each transverse 
output in these figures represents the transmitted in- 
tensity profile at the output mirror after a single 
cavity round trip. The input intensity II is in the 
neighborhood of the critical point for switch-on and 
these dynamic outputs display critical slowing down 
and overshoot switching. Figs. 2 and 3 represent 
dynamic outputs of the on-axis intensities of figs. 
l(a) and (b) respectively, in units of the cavity round- 
trip time tR. 

In summary, dispersive optical bistability in a ring 
cavity has been studied in the limit of very fast me- 
dium response and including a transverse (x) dimen- 

sion. The principal result is that strong diffractive 
coupling does not destroy bistability, in fact it results 
in simultaneous switching out to large radius. The 

TIME t/t. 

Fii. 3. Dynamics of on-axis intensity showing critical slow- 
ing down and overshoot switching for F = 0.06 and II(x = 0) 
= 122.2. 
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present one-transverse-dimension Fourier transform 
method has recently been extended to the large ef- 
fective Fresnel number case and the switching is 
found to be radially dependent [ 131. 
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