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Degenerate-four-wave mixing as a Sturm-Liouville problem
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The problem of steady-state degenerate holographic four-wave mixing in transmission geometry in nonlinear
dynamic media is reduced to a Sturm-Liouville or a one-dimensional quantum-mechanical scattering problem,
which is treated exactly. Linear absorption in the medium is accounted for, and pump depletion is allowed. No
restrictions are placed on the spatial phase mismatch between light-interference fringes and refractive-index
gratings. Energy and phase transfer are considered simultaneously.

The production of phase-conjugated or time-reversed
wave fronts in photorefractive crystals and other dy-
namic (real-time holographic) media has attracted
much experimental and theoretical attention for its
great applicative potential.' The building of phase-
conjugate mirrors and other optical elements has had a
great effect on optical signal processing (transmission
through fibers), adaptive optics (correction of aberra-
tions), and real-time holography, to mention few areas
of applications. The attainment of strong and effective
wave coupling in such media has significantly lowered
power requirements on the laser pump beams. Conse-
quently the effects of pump depletion and absorption
in the medium can no longer be ignored, and an urgent
need has been created for solutions of the theories of
wave mixing that include both of these effects.2

Prominent theories or models of degenerate four-
wave mixing (FWM) in dynamic media are due to a
Russian school from Kiev3 and to an American group
around Yariv.2'4 The Russians are using mostly inten-
sities and the relative phase as the relevant variables,
while Americans are using complex wave amplitudes.
The theories are essentially equivalent and have been
treated so far in various degrees of approximation.1-4
The attempts to treat them exactly in their general
form (depletion and absorption, energy and phase,
different geometries) have thus far proven futile.

In this Letter we undertake two tasks. First, we
solve exactly the theory of steady-state holographic
FWM in transmission geometry in its general form, as
presented in Ref. 2. Thus we allow for pump deple-
tion and absorption in the medium and place no con-
straints on the spatial phase difference between re-
fractive-index gratings and the light-interference pat-
tern. We not only consider energy transfer (i.e.,
variations in the beam intensities for exact phase con-
jugation) but retain arbitrary phase variations in the
fields as well. Second, we connect this model with a
one-dimensional quantum-mechanical scattering or
Sturm-Liouville problem (also exactly solvable) and
bring powerful methods of quantum theory to the res-
cue.

Our starting point is the following set of stationary
wave equations in the slowly varying amplitude ap-
proximation for the pump beams A1 and A2, the signal

A3, and the phase-conjugate output A4, all plane
waves2:

Al' = I (A1A3* + A2*A4)A3 - aA 1,

A2*/= I (A1A3* + A2*A4)A4* + aA 2*,

A3*1 = - (A1A3* + A2*A4)A 1* -aA3,

A4' = - (A1A3* + A2*A4)A2 + aA4,

(la)

(lb)

(ic)

(1d)

where r = ro exp[i(7r/2 - 0)] is the complex coupling
constant (k is the angle between index and interfer-
ence gratings), I = IA1!2 + IA 212 + IA 312 + IA 4 12 is the

total intensity, and a is the absorption constant. The
prime denotes the derivative in the propagation z di-
rection. We thus consider a transmission geometry of
the standard FWM setup: two counterpropagating
laser pumps illuminate a nonlinear medium situated
between the planes z - 0 and z = d. From the left
(and tilted for a small angle) comes the signal A3, and
out of the medium, in the same direction, goes the
output A4. For simplicity, all fields are assumed to be
of the same polarization. One is interested in the
functional dependence of the fields Aj(z) in the region
o < z < d, i.e., in the solution of the system [Eqs. (1)]
when boundary conditions are applied at the exit
planes, that is, when Alo, A3 0, A2d, and A4d =0 are
known. From these, the quantities of experimental
interest (e.g., the reflectivity p = A40 /A3 0*) are easily
constructed.

The analysis of Eqs. (1) proceeds as follows. First,
by combining them, four of the Manley-Rowe rela-
tions are obtained:

A1A2 + A3A4 = C1,

A2A3* - A1*A4 = C2,

IA1I12 + 1A31
2

= U 1 ,

IA21
2 + 1A412 = U2 ,

(2a)

(2b)

(2c)

(2d)

where cl and c2 are constant and ul = (Iho +
I 30)exp(-2az) and U2 = I2d exp[2a(z - d)] are given
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functions of z. By using these relations (which, by the
way, are not all independent; for example, UlU2 = lci12
+ Ic212), and in the style of Ref. 2, two Riccati equations
of the form

Y, + 2 [ic 1 + (ul - u 2)y F c*y 2] OF 2ay (3)

are obtained for the quantities Al/A2* (the upper sign)
and A4/A3* (the lower sign). A transformation of the
dependenty - (+u'Ircl*v)( ul + u2) and independent
variables 2acz - - A, where tanh y = [I1o + I30 - 12d
exp(-2ad)]/[11 o + I30 + I2d exp(-2ad)], turns the Ric-
cati equation into a second-order linear equation:

v" + [(1 + 26)tanh 11 1]v' -521C sech 2
r v = 0, (4)

with 6 = (F/4a) and b2
= UIU2. The prime here de-

notes differentiation with respect to I. Finally, an-
other change of the independent variable, 1 - tanh ¢

- 24, brings the equation for v into the hypergeomet-
ric equation

521Cv 2

4(:- 1)v" + [('/2 - )24 -7] u' + ~~v=0,(5)

where 7 equals-6 for A,/A2* and 1 - 6 for A4/A3*. In.
such a manner the problem is reduced to an exercise in
special functions theory. A few specific points, how-
ever, can simplify the analysis.

First, the last coordinate transformation reduced
the range of the independent variable to the interval
(0, 1). Therefore one need consider only the solutions
of the hypergeometric equation around regular singu-
lar points at= 0 and/or4= 1.

Second, solutions to Eq. (5) for Al/A2 * and A4/A3 *
are contiguous.5 General analysis then can benefit
from Gauss relations and need not be repeated for
both cases.

Finally, when Eq. (4) is put into its normal form
(which, as we shall see, turns out to be a simple Schr6-
dinger equation), the whole problem is transformed
into a convenient language of one-dimensional quan-
tum mechanics. The two problems can be analyzed in
parallel (without, however pushing this formal analo-
gy too far).

Two pairs of linearly independent solutions of Eq.
(5) can be picked up from Kummer's list5 of 24 solu-
tions to the hypergeometric equation, and for A4/A3*
they are of the form

v,(Q) = F(-6 + e, -6 - 6; 1-6; 4)
= (1 - ) 6 F(1 - e, 1 + e; 1 - 6; 4),

V2(A) = 4'F(e, -e; 1 + 6; 4)

- 4 everywhere. In other words, if the solutions of the
hypergeometric equation about 4 = 0 are chosen as the
basic set for A4/A3*, then the same functions (with 4
replaced by 1 - 4) will give the basic solutions for Al!
A2 * about 4 = 1. The only unknown parameter Icil
that figures in the fundamental solutions is evaluated
below from the boundary conditions.

Continuing along similar lines, by a further change
of the dependent variable, t' = v cosh6+1/2 4 exp(+4/2),
Eq. (4) is brought to its normal form ,"' + T4i = 0,
where

T = -12+ 6)2 _14
- [±(1/2 + 6)tanh 4 + (1/4 - E2)sech2 4]. (8)

Thus for 6 real (photorefractive media) a Schr6dinger
equation is obtained, with the potential and possible
states depicted in Fig. 1. More precisely, a Sturm-
Liouville boundary-value problem of the first kind is
obtained, since boundary conditions are given at finite
values of 4. Furthermore, the accessibility of various
displayed states places stringent conditions on our
parameters, which physically may not be plausible or
warranted. In fact, a realizable quantum-mechanical
analogy [with negative energy in Eq. (8)] would favor
bound states. A detailed account will be published
elsewhere.

With an identification6 tanh u =-(1/2 + 6)/(1/2 -
2e2) and Vo = (1/2 + 6)2/(1 - 4e2) - 1/4 + E2, the
potential gets the form

V = VO cosh2'(tanh , 1 tanh 4)2 (9)

up to a constant, and the scattering problem of this
potential was considered in detail by Morse and Fesh-
bach. 7

Going backward, from the solutions of the hyper-
geometric equation or the Schrodinger equation the
expressions for Yi = A,1A 2 * and Y2 = A4/A3* are found:

= ci*

rc,1 2 (VldV2' - V2dV1')

FeelI (VldV 2 - V2dU1)

- IdI2d(VldV2 -V2d'Vl )

- Id 12d(Vld V2

V

Free States

(6a)

(6b)

around 4 = 0 and

v1(4) = F(-6 + e, -6 - e; -6; 1 - )
= 6 F(-e, e; -6; 1 - 4), (7a)

VA() = (I - t)'+'F(1 + e, 1-,e; 2 + 6; I- I) (7b)

around 4 = 1 (and for 6 noninteger). Here e stands for
61c24/b, and F denotes the standard Gauss hypergeo-
metric function. The pairs of fundamental solutions
for A1/A2 * are the same, except that 4 is replaced by I

2

- V2d'Vl)

(1Oa)

Fig. 1. Typical shape of the scattering potential [Eq. (8) or
(9)] for the Schr6dinger equation of the holographic degen-
erate FWM. In a realizable quantum-mechanical analogy
with negative energy, bound states are preferred.
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Fig. 2. Intensity reflectivity I41I30 versus pump ratio I2d/
I10 for various values of the absorption at. Dashed lines
represent the undepleted-pumps theory of Ref. 2.

I V1id'V 2' - V2d'Vl' 1b
Y2 = (lOb)Pc1* Vld' 2 - V2d'Vl

where in each of the y's the corresponding set of funda-
mental solutions v 1 and V2 is supposed to be taken.
The differentiation, here with respect to z, is trivial.
From these, and from the Manley-Rowe relations, the
intensities are found:

U2- 1y2 12 u1

2 1- IY1Y212

J1 = IyJJ2 21

13= - lyl 1Vu2
1- IYiY2I2

(lla)

(llb)
The only missing ingredient, the value of the constant
c1, is found by applying boundary conditions to Yi and
Y2 at z = 0, i.e., by substituting the expression for p =
Y20 into the condition for Ybo = IioI(cl* - p*I30). In
this manner an implicit equation for cl is obtained.

Evaluation of the phases also presents no problem.
Denoting by z1the phase factors exp(i4j) of the various
beams, and by 01 and 02 the (known) phases of Yi and
Y2, the Manley-Rowe relations yield three expressions
for zj:

Z1Z2 = exp(i0l), z 3 z4 = exp(i02), (12a)

(12b)c2 z2 z4 = 1A2 A31 exp(i0 2) - IA 1A4 Iexp(i01),

from which, for example, z 1 , z 3 , and Z4 can be expressed
in terms of Z2. Then Z2 (or 02) is found by integrating
one of the original Eqs. (1):

=2 k02d + I {J sin 0 sin(01 - 02)

+ cos 0 [14 + J COS(02 -01 ] (13)

where J denotes (111314/12)1/2 and the intensities are
given by Eqs. (11).

The effects of absorption are displayed in Fig. 2, in
which the intensity reflectivity Iy2012 is plotted as a
function of the pump intensity ratio. It is seen that
these effects are always deleterious. The theory pre-
sented of course contains as a special case the absorp-
tionless theory of Ref. 2. Then the fundamental solu-
tions for A4/A3*, for example, are given with v1 =
exp[-r(A -Q)z/21] and v2 = expl-r(A + Q)z/21],
where A = U2- ul and Q = (A2 + 41c112)1/2, and the
remaining analysis applies without any change.

In summary, we have obtained an exact, closed-form
solution to the problem of degenerate FWM in trans-
mission geometry with pump depletion and linear ab-
sorption accounted for. Arbitrary phase mismatch
between the interference fringes and the refractive-
index pattern is allowed, and both the intensity and
the phase variations of the beams are considered si-
multaneously.
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