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Abstract 

The question whether double phase conjugator is an oscillator or an amplifier is addressed by a careful numerical 
investigation of the operation of the device in the regime of diminishing seeds. It is established that when the transverse and 
dynamical effects are included, the double phase conjugator can be both an oscillator and an amplifier, depending on the 
values of the diffraction and the convection parameters. Dynamics at threshold is investigated by two independent numerical 
methods, to find that competitive modes other than phase conjugate can grow and be stabilized. 
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A heated controversy arose recently [I-4]:  Is the 
double phase conjugate mirror (DPCM) an oscillator 
or an amplifier? The difference between the two 
amounts to whether a finite phase conjugate (PC) 
output can be obtained from zero input, or a finite 
input seed is always needed. We set out here to 
investigate this question, 

In general, an oscillation grows out of noise once 
the device's coupling strength is above a well de- 
fined threshold. Finite PC output is obtained in the 
limit of no seed input. In amplification there is no 
such threshold and any finite seed is amplified to 
some finite output. Here no seed means no output. 
We investigate the operation of DPCM as the seeds 
are decreasing and the coupling strength is increas- 
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ing. We show that depending on the relevant parame- 
ters describing the process, DPCM can be both an 
oscillator and an amplifier. We also display that at 
very high couplings and very low seeds (at the level 
of fanning instabilities) non-PC conical modes can 
appear and be stabilized. 

In the plane-wave (PW) case it is agreed that 
DPCM is an oscillator [5]. The controversy arose 
when transverse analyses of DPCM were attempted. 
The initial analysis of Zozulya et al. [ 1 ] indicates that 
the transverse DPCM is a convective amplifier. A 
more recent and a more complete analysis by the 
same group, both experimental and numerical [2], 
reaffirms that conclusion. Another group [3], consid- 
ering a transverse model of their own, and backed by 
their own experimental evidence, claims that DPCM 
is an oscillator. The theory presented in Ref. [4], uses 
the vectorial nature of coupled wave equations to 
show that DPCM is an oscillator. Thus, conflicting 
analyses have been performed and polarized points 
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of view have been reached. The situation seems 
confusing and a fresh attempt seems warranted. 

Our analysis starts at the scaled paraxial wave 
equations describing DPC process with a minimum 
of relevant variables and parameters [6]: 

0: A,  + [30,. A,  + idpO~A ! = QA 4 , (1) 

O:A 2 + flOxA 2 - i~0.~2. A2 = QA 3 , (2) 

O:A 3 - [30~A 3 - idpO.~2. A3 = - Q A  2 , (3) 

O : A , -  flO.~A 4 + idpO.~2. A ,  ffi - Q . A , ,  (4) 

where A 2 and A4 are the input beams, A~ and A 3 
are the corresponding PC signals, fl is the relative 
transverse displacement that accounts for the convec- 
tive effects in DPC. It is defined [6] as/3 = Od/ to  o, 
where 0 is the half angle at the beams intersection, d 
is the crystal thickness, and to o is the beams spot 
size. ~ is the parameter controlling diffraction, ~ = 
(4 'n 'F ) - i  where F ffi t o 2 / A d  is the Fresnel number, 
and A is the wavelength in the medium, z is the 
paraxial axis and x is the transverse coordinate. We 
restrict our analysis to one transverse dimension, 
with minimal loss of generality. The bar denotes 
complex conjugation and Q is the amplitude of the 
grating that is generated in the crystal. We should 
mention that at least part of the oscillation versus 
amplification controversy stems from the fact most 
of the initial accounts took only convective or only 
diffractive effects into consideration. We believe that 
a complete picture should include both of these 
effects, 

The temporal evolution of Q is approximated by 
a relaxation equation of the form: 

F 
• a,o + o ffi 7 ( A " r '  A,),  (5) 

where v is the relaxation time of the grating, 1 is the 
total intensity, and F is the PR coupling strength 
(coupling constant times the crystal thickness). Both 
F and [3 can be positive or negative, however we 
restrict our attention only to the positive values. In 
writing Eq. (5) it is assumed that the relative trans- 
verse derivative OxQ/Q of the grating amplitude is 
small as compared to the product of the Debye 
screening wavenumber and the transverse spot size 
of any of the mixing beams, In other words, we 
assume that the characteristic length over which the 

grating amplitude changes in the transverse direction 
is large as c~lpared to the grating spacing. 

The boundary conditions are that the four initial 
amplitudes C~_ 4 are launched into the crystal. The 
transverse amplitude profiles are assumed to be dis- 
placed Gaussians, with parameters that take into 
account noncollinear propagation of the beams: 

A,,4(x,0) = C,.4G ( - ~ , x  ~- [3/2),  (6) 

32,3(x,,~) = C2.3G ( ~ , x  +_ [3/2),  (7) 

where z = 0 and z = d = 1 denote the entry and the 
exit face of the crystal and G(~',p) is the Gaussian 
beam function [6]. Here ~" represents the beam cur- 
vature parameter. In DPC the initial PC beams C~ 
and C3 are not supplied externally, they arise from 
the noise in the crystal. Therefore, we seed the 
values of C I and C a and monitor their influence on 
the process. We assume that Ic 12-1cal2= ~ and 
decrease gradually the values of • (up to 10-9). We 
tried other seeding strategies (random noise genera- 
tion) and obtained the same results at the point of 
vanishing seeds. 

Analytical treatment of Eqs. (1)-(4) and (5) is not 
possible. Different numerical procedures are in- 
vented [2,3,6]. We employ two completely indepen- 
dent numerical methods, to control numerical insta- 
bilities that might arise owing to dynamical instabili- 
ties. Such a procedure is recommended in view of 
the possibility that instabilities seen in a numerical 
simulation may come from the numerical method 
employed, and not from the system under investiga- 
tion [7]. One of the methods is a beam propagation 
method [6] based on fast Fourier transform (FFT), 
the other is a Crank-Nichoisop (CN) procedure. Both 
agree excellently in steady state cases and display 
qualitatively similar results when instabilities are 
encountered. 

Steady state PW case can be solved analytically 
[8]. Moreover, it can be co,~?ared to a second order 
phase transition [9]. The exit PC fields at ~,,.¢ z = 0 
and the z ffi I faces of the crystal are given by [8]: 

A 3 o = C 2  sin(u),  A ,,I = C" 4 An(u),  (8) 

where u is the total grating action: 

rlQI P 

= - - 7 -  dz, (9) 

which is also connected with the order parameter a. 
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For symmetric boundary conditions this connection 
is very simple: 

tan(u) = s i n h ( - ~ ) .  (1O) 

The order parameter a is found from the transcen- 
dental equation: 

 ll, 

and a sharp threshold condition on the coupling 
strength F th -  2 follows from this equation. The 
quantity becoming ordered at the threshold point is 
the grating amplitude Q: 

21QI-- a(IC212 + IC, I 2) s in(20) ,  (12) 

where tan(O)=exp(aFz-aF/2). The beam seeds 
here play the role analogous to the role of external 
magnetic field in the ferromagnetic phase transition. 
The analogy with phase transitions is rather formal 

and it does not hold in the general transverse case. 
We use these results as a check on our numerics. 

In numerical simulations one always needs a fi- 
nite seed to start up the process, however one can 
obtain useful information from the way in which the 
system behaves as the seed is getting smaller. Based 
on such an information and confirmed by theoretical 
results, we conclude that in the PW approximation 
DPCM is an oscillator with a sharply defined gain 
threshold. Seeds are only needed as an initial push. If 
they are turned off after PC beams are obtained, the 
reflectivity remains high. Reflectivity levels attained 
do not depend on the seed, with marked saturation 
owing to depletion of pumps. However, below the 
threshold the reflectivity depends directly on the 
seed, going to zero as the seed is diminished. 

In the transverse case with ~ 0 and /3 = 0, 
DPCM is a diffractive oscillator. The gain threshold 
is not well defined anymore. Nonetheless, the exis- 
tence of an oscillation threshold for each value of the 
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Fig. i. Total rcflectivi ly versus coupling strength on the logarithmic scale, for different values of  the seeding, and for two values of the 
transverse displacement: (a)/3 = 0.05, (b) /3 = I. 1"he value of the diffraction parameter is fixed at ~ = 2.72 x I0 -  4. The amplitudes of the 
Ganssian pump beams arc chosen equal, C 2 = C 4 = 1, while the input of  PC beams I c ,  I z = Ic31 ~ = • is varied. The value of ~ for each 
curve can be inferred from the intercept of the curve with the REFLECTIVITY axis at F = 0. The points indicated are the calculated values, 
whereas the curves arc polynomial fits drawn to guide the eye. The insets depict the same information on the linear scale. While in (a) the 
existence of a gain threshold at F = 2 is evident, in (b) there is no such threshold, and the amplification of each seed proceeds smoothly. 
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diffraction parameter ~ is evident [6]. Further in- 
crease in ~ leads to complicated transverse beam 
profiles and the device ceases to be a PC mirror. It 
acts as an amplifier, albeit a poor one. We term such 
a device a diffractive amplifier. In general, /3--0 
does not mean that the beams are actually collinear. 
It means that the ratio of the angle at the beams 
intersection to the angular spread of the beams is 
small, and hence neglected. The influence of the 
convective term then can be neglected as compared 
to the influence of the diffractive term. Such a 
situation is easily obtained in experiments with thin 
crystals and wide beams. 

When the influence of the transverse displacement 
is included, then for low values of /3 the device 
remains a convective oscillator up to a critical value 
/3c. Above the critical value of the transverse dis- 
placement the device becomes a convective ampli- 
fier. Similar to the gain threshold, the critical value 
of/3 broadens into a critical region, and the transi- 
tion from an oscillator behavior to an amplifier 
behavior is more gradual. This is visible in Fig. 1, 
which depicts the growth of different beam-seeds for 
the same value of ~b = 2.72 × I0 -a and for two 
values of /3, one above the critical value and one 
below the critical value. 

An independent test for the oscillation versus 
amplification is to cut off the seed once the steady 
state is reached, If the reflectivity attained drops to 
zero, then the device is an amplifier, if the reflectiv- 

0 50 I00 150 

Fig, 2, Reflectivity as a function of time for two values o f / / .  At 
t == lOOT' Ore PC seed is cut off(suddenly changed from e = I0 -5 
tO I =  I0-1~), For /3 =0.05 (dashed line) the reflectivity is 
unchanged whereas for/3 = I (solid line) the reflectivity drops to 
zero. Here F = 5. 
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Fig. 3. Reflectivity as a function of the coupling strength, for 
different values of the transverse displacement /3 (solid line: 
/3 = 0.05, dashed:/3 = 0.25, chain-dotted:/3 = 0.5, dotted:/~ = I). 
(a) Double phase conjugate mode, for ~ ffi 2.72X I0 -4. (b) Coni- 
cal mode, for ~, = 0.01. The value of the seed is fixed at • ffi I0 -9. 
The same plots are obtained either by the FFT or the CN method. 
Other parameters as in Fig. I. 

ity remains high, it is an oscillator. Such a test is 
performed in Fig. 2, which displays the reflectivity 
of DPCM before and after the seed is cut off for the 
two mentioned values of/3.  

Fig. 3 presents a change in the integrated reflec- 
tivity as /3 is varied, for fixed ~, and a fixed seed 
(~ = 10-9). Apart from corroborating the change in 
the nature of PC process, this figure displays the 
existence of stable conical modes. The reflectivity of 
one such non-PC mode that can also be supported by 
the system is depicted in Fig. 3(b). This competing 
mode, arising from the noise, is an oscillation. When 
a conical mode is oscillating, the device is not a PC 
mirror and instabilities can occur. We discuss such 
instabilities and mode competition later. 

The convective flow of energy out of the interac- 
tion region helps resolve the controversy between 
oscillation and amplification. It represents a mecha- 
nism for inhibition of oscillations [I]. In the PW case 
such a mechanism is absent. Another important 
mechanism is the multimode operation of DPCM 
when transverse dimensions are accounted for. Dif- 
ferent spatial modes have different oscillation thresh- 
olds. When more than one mode can oscillate, the 
oscillation does not start at a particular value of 
coupling, but is turned on gradually over an interval. 
The transverse model changes the sharp transition at 
the threshold into a more gradual continuous transi- 
tion. 

As the threshold region is approached, critical 
slowing down is observed. For small ~ it takes very 
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long times to achieve convergence. As /3 and 
increase, DPCM changes from oscillator-like behav- 
ior to amplifier-like behavior, and for high values of 
the parameters the device might not be a DPCM at 
all. Thus, having to choose between convective am- 
plifier and optical oscillator in describing DPCM, we 
believe that the appropriate choice is convective 
oscillator. 

Our results concerning oscillation versus amplifi- 
cation in DPCM can be summarized as follows (Fig. 
4). For ~ = 0 and / 3 -  0 DPCM is an oscillator. For 

4~ 0 and /3 = 0 it is a diffractive oscillator. For 
high values of ~ (of the order of l) the device is not 
a PC mirror. It can best be described as a diffractive 
amplifier. For & - - 0  and /3 4~ 0 it is a convective 
oscillator up to a critical transverse displacement/3c 
(again of the order of 1). Above /3~ DPCM is a 
convective amplifier. For ~ 4~ 0 and/3 4~ 0 the situa- 
tion is not so clear. Both diffractive and convective 
effects contribute to the behavior of the device. For 
each F above 2 there seems to exist a critical curve 
or a critical region in the (&,/3) plane below which 
the device acts as an oscillator (convective and/or 
diffractive), and above which it acts as an amplifier 
(convective and/or  diffractive). Owing to critical 
slowing down, the investigation of such a critical 
curve is computationally expensive. 

For weak seeds and strong couplings, complicated 
spatio-temporal phenomena occur. Independent of 
the numerical method applied, instabilities tend to set 
in, with fanned unstable outputs (Fig. 5). The reflec- 
tivity does not settle onto any specific value, but 
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Fig. 4. Displaying qualitatively the behavior of DPCM in the 
(0 , ,8 ,F)  parameter space. For high values o f / "  instabilities can 
occur. 
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Fig. 5. (a) Dynamics of the total reflectivity, obtained by two 
independent numerical methods. Solid line: FFF method, dashed 
line: CN method. The parameters for both simulations are: F = 
6.5, /3 = I, O = 0.001, ~ = 10 -9. (b) Spatial distribution of the 
PC beam 13 in the crystal at time 81~', obtained by the FFT 
method. (c) Spatial distribution of 13 obtained by the CN method 
after 87~" periods. It is seen that qualitatively both methods offer 
similar behavior, with similar transverse profiles, however the 
dynamics of the two methods proceeds at different paces. 

wanders around in time. Many spatial modes, al- 
lowed by the geometry of the process, compete for 
the energy of the pumps, and an irregular oscillation 
ensues. We stress the fact that this irregular behavior 
is observed for real F .  Previously such irregularities 
were observed only when the coupling strength is 
made complex [6]. 

With a slight change in a parameter (in this case 
40, a mode other than PC can win the competition, 
and grow out of the cone of emissions allowed by 
the DPC geometry. In our one-dimensional trans- 
verse case, the cone is along the d~rections of the two 
pumps. Generally, the cone collapses in the direction 
of the maximal gain, which is close to the direction 
of pumps. In one case a PC beam is obtained, in the 
other a stable conical oscillation [10]. This is dis- 
played in Fig. 6. The conical emission is an osciila- 
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Fig. 6. Stable transverse spatial profiles of (a) ! 2 and (b) 13, for 
cb= 2.72Xl0 -4 (the PC mode), and (c) ! 2 and (d) i 3, for 
¢~ = 0.01 (the conical mode). The PC and conical modes are not 
exactly in the directions of pumps, but are slightly shifted. Identi- 
cal outputs are obtained, either by the FFT method or by the CN 
method. The other parameters are F = 5,/3 = I, • = 10-5. 

tion, with a clearly visible threshold (Fig. 3b). This 
threshold looks very similar to the threshold of a PC 
mode, except that it persists for high /3. The conical 
mode drains energy from the A 2 pump more effi- 
ciently than the competing PC mode and is consis- 
tent with the available theoretical and experimental 
evidence [10]. 

We also find that the inclusion of finite lateral 
extension of beams in a PC process lowers the 
reflectivities, causes the appearance of traveling 
transverse waves and defect-mediated turbulence, 
improves the understanding of frequency shifts in PR 
oscillators, and accounts for experimentally observed 
asymmetry between the transmissivities of the crys- 
tal along the beams incidence. These findings are 
reported elsewhere [I 1,12]. 
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