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We investigate the dynamics of four-wave mixing processes in photorefractive crystals in paraxial approxi-
mation, assuming the phase-conjugation condition. By applying an external electric field to the crystal, we
observe an onset of instabilities in the phase-conjugate beam, the generation of running transverse waves, their
mutual collisions, and a continuous transition to a regime of spatiotemporal chaos. This state appears as
irregularly oscillating defectlike patterns in one transverse dimension. Running transverse waves are identified
as the basic modes of the system giving rise to a secondary instability. The observed regular and irregular
spatiotemporal oscillations are characterized by means of a spatiotemporal cross-correlation function and
singular value decomposition. In the extension to two transverse dimensions the possibility of an even greater
variety of regular and irregular patterns is observed.@S1050-2947~96!03206-4#

PACS number~s!: 42.65.Sf, 42.65.Hw

I. INTRODUCTION

Transverse and dynamical effects in active and passive
optical systems have recently become a topic of increased
interest@1#. In addition to displaying a wealth of complex
physical phenomena, they represent convenient systems
~both theoretically and experimentally! for investigation of
possible routes to spatiotemporal chaos. Various scenarios
leading to complex spatiotemporal dynamics are often medi-
ated by defects in the transverse amplitude distribution of
light beams, hence providing a link to other fields~such as
fluid dynamics and condensed matter physics! where defects
also play a prominent role in the onset of turbulence.

Photorefractive~PR! oscillators or phase-conjugate~PC!
mirrors are essential parts of any envisioned device employ-
ing optical phase conjugation~OPC! @2#. Owing to their slow
response times, PR oscillators provide an opportunity for a
slow-motion study of pattern dynamics, allowing for an ob-
servation of complex spatiotemporal pattern formation in
real time. This advantage led to the first experimental obser-
vation of optical vortices~phase singularities! in a nonlinear
optical system, using a unidirectional ring resonator with a
PR gain@3#. In the following years there have been many
theoretical and experimental studies of spatiotemporal dy-
namics in unidirectional PR ring resonators@4#, bidirectional
PR ring resonators@5#, and PC resonators with PR crystals
acting as PC mirrors@6#. While some phenomena, such as
vortex dynamics, periodic alternation, and chaotic itinerancy
of cavity modes@7# are well understood, the excitation of
running transverse waves~RTW! on the route towards spa-
tiotemporal chaos has not been investigated so far, to the best

of our knowledge. Indeed, they should readily be observable
in PR optical phase conjugation~OPC!, since the necessary
ingredients~detuning of PC waves, running gratings, and
complex couplings! constitute a part of the normal operation
of PR conjugators. We observe RTW in numerical simula-
tions of OPC through the process of four-wave mixing
~4WM! in PR crystals. The left- and the right-going RTW
appear, collide, and build up localized standing waves in the
transverse profiles of the mixing beams. We observe a tran-
sition to spatiotemporal chaos associated with oscillating de-
fectlike patterns in the transverse plane. This transition to
spatiotemporal chaos is characterized by means of spatiotem-
poral cross-correlation functions~CCF! and singular value
decomposition~SVD!.

The paper is composed as follows. Section II presents the
transverse model of 4WM in PR crystals in paraxial approxi-
mation. The occurrence of RTW and their interactions are
discussed in Sec. III. The transition to spatiotemporal chaos
is analyzed with the help of CCF~Sec. IV! and SVD~Sec.
V!. Some results for two transverse dimensions are presented
in Sec. VI. Section VII concludes the paper.

II. MODEL EQUATIONS

In the following we will consider the standard photore-
fractive 4WM processes in transmission geometry@8# ~Fig.
1!. Basic equations describing the process in paraxial ap-
proximation are of the form@9#

]zA11bK̂•¹TA11 if¹T
2A15QA4 , ~1a!

]zA21bK̂•¹TA22 if¹T
2A25Q*A3 , ~1b!

]zA32bK̂•¹TA32 if¹T
2A352QA2 , ~1c!*Electronic address: joerg@optics.iap.physik.th-darmstadt.de
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]zA42bK̂•¹TA41 if¹T
2A452Q*A1 , ~1d!

whereAj (x,y,z) are the slowly varying envelopes of the four
beams,¹T

2 is the transverse Laplacian, andf is a measure for
the magnitude of diffraction. The operatorK̂•¹T is the di-
rectional derivative in the transverse plane along the grating
wave vectorK̂ , andb is the relative transverse displacement
caused by the noncollinear propagation of the four beams. In
scaled coordinatesb5u/d, whereu is the half angle at the
beam intersection andd is the angular spread of the interact-
ing beams.Q is the complex amplitude of the transmission
grating in the crystal, whose temporal evolution is approxi-
mated by a relaxation equation of the form@10#

t] tQ1
ED1Eq1 iE0

EM1ED1 iE0
Q

5
g0

I 0

Eq1ED

ED

ED1 iE0

EM1ED1 iE0
~A1A4*1A2*A3!,

~2!

wheret is the relaxation time constant of the grating,I 0 is
the total light intensity, andg0 is the bare PR coupling con-
stant.ED , Eq , andEM are the characteristic internal fields
describing the electronic processes in the crystal~according
to Kukhtarevet al. @10#!, whereasE0 is the static external
electrical field applied to the crystal. Note thatE0 effectively
renders both the coupling constantg0 and the relaxation rate
(t21) complex. Hence the external fieldE0 exerts a pro-
found influence on the process of OPC, e.g., by breaking the
frequency degeneracy, allowing for the buildup of running
gratings and the appearance of RTW. Note further that in
writing Eq. ~2!, we assume that the wave number of the
grating K̂ is small compared to the Debye screening wave
numberkD @11#. Consequently, the implicit assumption of
neglecting the transverse derivatives ofQ is well justified.

Equations~1! and ~2! are solved numerically using the
beam propagation method described in@9#. An alternative
Crank-Nicholson procedure is employed in unstable situa-

tions, to eliminate the possibility of looking at numerical
rather than physical instabilities. Results obtained by both
methods are in excellent agreement. Boundary conditions
play an important role in every investigation of RTW and
vortex dynamics. In fact, some of the results on pattern for-
mation due to the occurrence of traveling waves reported
elsewhere@12# are obtained only by assuming rather special
boundary conditions. Here the boundary conditions are cho-
sen consistently with the corresponding experimental condi-
tions. Displaced Gaussian beams are chosen for incident
fields at the opposite faces of the crystal, in combination with
‘‘open’’ lateral sides~no reflecting or periodic boundary con-
ditions!. Transverse patterns appear spontaneously. To pre-
vent aliasing and overshooting problems, the fieldsAj are
smoothly damped at the edge of the transverse numerical
grid. Thus far, the input beams are given by

A4,1~x,z50!5C4,1G~2z,r!, A2,3~x,z5d!5C2,3G~z,r!,
~3!

whereC124 are the amplitudes of the Gaussian beams inci-
dent upon the crystal andG(z,r) is the Gaussian beam func-
tion @9#. z represents the beam curvature parameter and
r25(x6b/2)21(y6b/2)2.

The parameters used in the simulations are chosen as fol-
lows. The longitudinal coordinate (z) is normalized to the
crystal lengthd and the transverse coordinates (x,y) are nor-
malized to the beam diameter.EM5100, Eq55, ED51
~given in kV/cm!, g0d524, andf50.0005. The amplitudes
of the input beams areC150.3, C250.7, andC450.15,
whereasC3 is chosen to be small~in our simulations 1029,
just enough to provide a seed for the PC beam!. Practically,
a PC condition is assumed. With such a set of parameters,
and in particular without applying an external electric field
~i.e.,E050), we do not observe instabilities of any kind.

III. RUNNING TRANSVERSE WAVES
AND THEIR INTERACTION

The application of an external electrical fieldE0 across
the PR crystal changes the dynamical behavior of the PC
process. Normally, an external field is applied to restore a
p/2 phase shift between the interference fringes and the re-
fractive index gratings, enhancing the process of phase con-
jugation. In our case, the situation is reversed. Starting with a
degenerate oscillation and ap/2 shift, we apply the field
E0 to produce frequency detuning, and to study the destabi-
lization of the PC process. As the electric field is increased,
we observe the appearance of basic RTW, their collision, and
complicated dynamics resulting from their interactions, lead-
ing to spatiotemporal chaos. Note that chaos in the temporal
regime on the basis of a plane-wave model has already been
investigated@13#. However, we concentrate on the combined
influence of spatial and temporal effects.

Figure 2 displays the basic right-going and left-going
RTW. The spatiotemporal dynamics of the PC intensity
I 3(x,z50)[I 30 is shown for the value ofE051.8 kV/cm
and forb560.05, in one transverse dimension. Sources of
waves are located at the left transverse edge for the right-
going RTW, and at the right transverse edge for the left-
going RTW. The RTW travels transversally towards the
beam center and is absorbed in a sink at the opposite trans-
verse edge.

FIG. 1. Geometry of the four-wave mixing process. The pump
beamsA1 andA2 enter the crystal from the opposite side.A4 is the
signal beam andA3 is the phase-conjugated replica ofA4 . z is the
propagation direction andx is one of the transverse directions, the
other, y, being perpendicular to thex-z plane.Q represents the
amplitude of the transmission grating andV is the high-voltage
source of the static electric fieldE0 .
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Reduction in the value ofb leads to the combined appear-
ance of both left-going and right-going RTW. For suffi-
ciently small values ofb the initial conditions~and not the
sign ofb) determine the appearance of left-going and right-
going RTW. Forb50.001 and for low values ofE0 ~up to
E0'1.2 kV/cm!, a stable oscillation~fixed point! with
Gaussian transverse profiles for the four beams is found. At
E051.21 kV/cm this stable oscillation loses stability~Fig. 3!,
and a ‘‘fish-bone’’ instability arises, in which a left-going
and a right-going RTW collide. In this case sources are lo-
cated at both transverse edges and the sink of the RTW ap-
pears as a localized standing wave in the center of the beam.

In order to provide direct information on the spatiotempo-
ral dynamics of RTW, we plot the transverse intensity and
phase of the right-going RTW and the ‘‘fish-bone’’ oscilla-
tion ~Fig. 4!. The tilt of the phasef3 of the beamI 3 indicates
the size and the direction of the transverse wave vectorkx of

RTW. Figure 4~d! of the ‘‘fish-bone’’ oscillation depicts the
collision of the right-going and the left-going RTW, and the
resulting standing-wave pattern in the middle where the
phase profile is flat.

An increase inE0 leads to an increase in the amplitude of
the left-going RTW, and a decrease in the amplitude of the
right-going RTW~Fig. 5!. Consequently, the resulting stand-
ing wave is shifted away from the center of the beam. The
inverted symmetric oscillation with respect to the center
(x50) axis can be stabilized by changing the initial condi-
tion forQ. For values ofE0 beyond 2.0 kV/cm both periodic
oscillations lose their stability. A regime of irregular oscilla-
tions is established forE052.2 kV/cm, and the state of spa-
tiotemporal chaos is reached forE052.3 kV/cm. This state is
characterized by chaotic wandering of a defectlike structure
~line defect!, located where the modulated left-going and
right-going wave collide. Similar scenarios are observed in

FIG. 2. Spatiotemporal dynamics ofI 3(x,z50)[I 30 as mea-
sured at the surface of the crystal atz50. Bright regions represent
high light intensity, dark regions indicates low intensity.~a! Right-
going RTW with b50.05. ~b! Left-going RTW with b520.05.
E051.8 kV/cm. In all figures the transverse coordinates (x,y) are
normalized to the beam diameter.

FIG. 3. Spatiotemporal dynamics ofI 30 with b50.001 and
E051.21 kV/cm. ~a! Onset of the spatiotemporal oscillation,~b!
‘‘fish-bone’’ oscillation after transients have died away.

FIG. 4. Transverse intensity and phase profiles in the middle of
the PR crystal (z5d/2). ~a! Intensity of the right-going RTW with
the parameters of Fig. 2~a!. ~c! Intensity of the ‘‘fish-bone’’ oscil-
lation ~parameters as in Fig. 3!. The dashed lines are the corre-
sponding intensity profiles ofI 4 at z5d/2. The corresponding
phase profilesf3 at z5d/2 of the right-going RTW~b! and the
‘‘fish-bone’’ oscillation~d! are also shown. The intensity is given in
units of the sum of the incident pump intensitites (C11C2).
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the solution of the one-dimensional complex Ginzburg-
Landau equation@14# as well as in fluid wave patterns@15#.

IV. SPATIOTEMPORAL CORRELATIONS

The calculation of correlation functions facilitates the un-
derstanding of complex spatiotemporal dynamics@16#. We
calculate the cross-correlation function~CCF!, defined as

C~x0 ,h!5
^dI ~xc1x0 ,t8!dI ~xc2x0 ,t81h!&T

A^dI 2~xc1x0 ,t8!&TA^dI 2~xc2x0 ,t8!&T
,

~4!

where^•••&T is the average over the whole observation time
T, anddI (x,t8)5I (x,t8)2^I (x,t8)&T is the intensity devia-
tion at the pointx. Thus, the correlation function determines
how much the output signal at the reference pointxc1x0 and
at the timet85t/t is correlated to the signal at the transverse
positionxc2x0 and at the timet81h. xc represents the spa-
tial reference point.

The spatiotemporal dynamics ofI 30 is considered for a
period of t5400t intervals after transients have ‘‘died
away.’’ We assume this to be representative of its long-time
behavior. Figure 6 displays contour plots of the spatiotempo-
ral CCFC. Dark regions indicate anticorrelation, bright re-
gions indicate high correlation. The reference pointxc is
placed in the center of the beam at the exit face of the crystal
(xc52b/2 for I 30). CCF of the basic RTW~not shown here!
is a direct image of the original pattern, displaying periodi-
cally oscillating and spatially tilted stripes of high correlation
~indicating propagation of RTW!. CCF of the ‘‘fish-bone’’
oscillation @Fig. 6~a!# is periodic in time. A spatial correla-
tion length cannot be identified, indicating that the left-going
RTW and the right-going RTW are decoupled in space. Two
different regions can be identified in the correlation function
of the periodic oscillation state atE051.35 kV/cm @Fig.
6~b!#. In the central region (0<x0<0.75) tilted stripes indi-
cate that the left-going RTW is dominant. Here a nonzero
correlation length is found, while the typical correlation time
is the same as for the ‘‘fish-bone’’ oscillation. In the spatially
decoupled region (x0>0.75), the spatiotemporal evolution
of C is similar to the one seen in the case of the ‘‘fish-bone’’
oscillation, indicating the presence of both left-going and
right-going RTW. CCF pertaining to the irregular oscillating
state atE05 2.2 kV/cm shows a slight decrease of the high

correlation stripes, whereas a rapid decrease of the correla-
tion function is observed forx0>0.75 @Fig. 6~c!#. Finally, in
the spatiotemporal chaos, a rapid decrease ofC in space and
time is observed@Fig. 6~d!#.

To highlight the role and define a measure for the trans-
verse complexity, we determine the maxima ofC with re-
spect to all delay timesh,

Cmax~x0!5maxhC~x0 ,h!. ~5!

Cmax thus represents a measure of transverse correlations.
PlottingCmax versus the transverse distancex0 allows for a
quantitative comparison of different spatiotemporal states

FIG. 5. Spatiotemporal dynamics ofI 30 with
b50.001 and~a! E051.35, ~b! E052.2, and~c!
E052.3 (E0 given in kV/cm!.

FIG. 6. Gray scale plots of the spatiotemporal cross-correlation
function C(x0 ,h) of I 30 versus the spatial reference pointx0 and
the delay timeh. ~a! The ‘‘fish-bone’’ oscillation of Fig. 3~b!.
~b!–~d! The periodic and chaotic oscillations of Fig. 5, respectively.

4522 53LEONARDY, KAISER, BELIĆ, AND HESS



~Fig. 7!. Cmax pertaining to the RTW and the ‘‘fish-bone’’
oscillation is constant and/or slightly oscillating below
Cmax51, indicating spatiotemporally ordered states. In the
Cmax corresponding to the periodic oscillation atE051.35
kV/cm, we can recognize the two different regions men-
tioned above. Note thatCmax in the decoupled region is
much smaller thanCmax in the center region. For the irregu-
lar oscillating state we observe a decrease ofCmax with in-
creasingx0 , and for the final spatiotemporal chaotic state we
observe an exponential decay, which indicates the presence
of spatiotemporal chaos@3,17#.

V. DYNAMICS OF COHERENT STRUCTURES

In order to quantitatively characterize the large variety of
different spatiotemporal oscillations noticed in our 4WM
simulations, we apply the singular value decomposition
~SVD! or the Karhunen-Loe`ve decomposition@18#. SVD has
proven a powerful tool in determining and distinguishing
different spatiotemporal degrees of freedom, which are most
often hard to detect by visual inspection@18,19#. By comput-
ing and analyzing the basic eigenmodes, we obtain a better

insight into the mechanisms leading to complex and chaotic
spatiotemporal dynamics.

The procedure for the SVD starts with the calculation of
the spatial covariance matrix of the transversally discretized
intensity distribution

Ck,l5^u~xk ,t8!u~xl ,t8!&T , ~6!

wherek,l51,2, . . . ,N is the number of the discrete trans-
verse pointsxk and u(xk ,t) is the intensity fluctuation
u(x,t)5dI (x,t)/A^I (x,t)&T, wheredI is defined in the pre-
ceding section. Eigenvectorsp(a) of Ck,l represent an opti-
mal basis for expansion ofI (x,t). They maximize the pro-
jected mean ^(p,u)2&T , where (p,u)5(kp(xk)u(xk ,t)
denotes the scalar product, i.e., the eigenvectors provide a
minimum number of eigenmodes needed in the expansion.
By construction,Ck,l is symmetric and its eigenvaluesl (a)

FIG. 7. Temporal maximaCmax of the spatiotemporal cross-
correlation function versus the transverse distancex0 extracted from
the data of Fig. 6:E051.21 ~solid line!, E051.35 ~dotted!,
E052.2 ~dashed!, andE052.3 ~chain-dotted! (E0 given in kV/cm!.

FIG. 8. Spectra of the normalized eigenvaluesl (a) calculated
from the data ofI 30: filled dots, RTW@Fig. 2~a!#; crosses, ‘‘fish-
bone’’ oscillation@Fig. 3~b!#; rhombuses, irregular oscillation@Fig.
5~b!#; triangles, spatiotemporal chaotic state@Fig. 5~c!#.

FIG. 9. Eigenmodes of the intensityI 30 of the RTW of Fig. 2~a!.
~a! The first~largest! eigenmode~solid line! p(1)(x) and the second
eigenmode~dashed! p(2)(x). ~b! The third eigenmode~solid line!
p(3)(x) and the fourth eigenmode~dashed! p(4)(x). The super-
scripts denote the respective eigenvaluesl (a). ~c! Time dependence
of the expansion coefficientsa(1) ~solid line! anda(2) ~dashed!. ~d!
Time dependence of the expansion coefficientsa(3) ~solid line! and
a(4)~dashed!.
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determine the probability of the occurrence of the corre-
sponding eigenvectorspa in the intensity fieldu(x,t). In the
following, the eigenvalues are normalized by
^(u,u)&T5(a51

M l (a). The N eigenvectorsp(a)(xk) form a
complete orthonormal set(kp

(a)(xk)p
(b)(xk)5dab and are

used as basis functions for an expansion of the original in-
tensity distribution@19#:

dI ~xk ,t !5I ~xk ,t !2^I ~xk ,t !&T5(
a

a~a!~ t !p~a!~xk!,

~7!

where the time dependent expansion coefficients are given
by

a~a!~ t !5(
k
p~a!~xk!dI ~xk ,t !. ~8!

Figure 8 exhibits the spectrum of the normalized eigen-
valuesl (a), for the dynamic states considered thus far, the
RTW, the ‘‘fish-bone’’ oscillation, the irregular oscillation,
and the spatiotemporal chaotic state. For the RTW and the
‘‘fish-bone’’ oscillation the eigenvalues decrease rapidly
with increasinga. The two largest eigenmodes contain more
than 97% of the original spatiotemporal information. Note
that the eigenvalues of RTW are arranged in pairs. Eigen-
mode spectra of the chaotic states indicate that the number of
modes needed for a reconstruction of the original oscillation
increases, pointing to an increase in the number of intrinsi-
cally excited degrees of freedom. The information on the

spatiotemporal complexity of the dynamic states considered
thus far, provided by SVD, agrees well with the results ob-
tained by analyzing the spatiotemporal correlations of those
states.

In Fig. 9 the transverse dependence of the four largest
eigenmodes and time-series of the corresponding expansion
coefficients of the RTW is shown. Bothp(1) andp(2) repre-

FIG. 10. Eigenmodes of the intensityI 30 of the ‘‘fish-bone’’
oscillation of Fig. 3~b!. ~a! p(1)(x) ~solid!, p(2)(x) ~dashed!. ~b!
p(3)(x) ~solid!, p(4)(x) ~dashed!. ~c! p(5)(x) ~solid! and p(6)(x)
~dashed!.

FIG. 11. Eigenmodes of the intensityI 30 of the spatiotemporal
chaotic state of Fig. 5~c!. ~a! p(1)(x) ~solid!, p(2)(x) ~dashed!. ~b!
p(3)(x) ~solid!, p(4)(x) ~dashed!. ~c! p(5)(x) ~solid! and p(6)(x)
~dashed!.

FIG. 12. Spatiotemporal dynamics ofI 30 after transients have
died away. The two-dimensional plane is cut aty50, b50.05,
f50.01, andE051.5 kV/cm. The other parameters are the same as
in the case of one transverse dimension.

4524 53LEONARDY, KAISER, BELIĆ, AND HESS



sent a transverse standing wave, with a relative phase shift of
p/2. The corresponding expansion coefficients also show a
relative phase shift ofp/2, indicating the propagation of
RTW. The third and the fourth eigenmode have both spa-
tially and temporally the structure of higher harmonic oscil-
lations with respect to the two largest eigenmodes, and pro-
vide very weak corrections to the original.

For the dynamic state where we observe the ‘‘fish-bone’’
oscillation, the results obtained by applying the SVD analy-
sis are more diverse~Fig. 10! than in the case of RTW. The
transverse dependence of the two largest eigenmodes clearly
displays the collision of the left-going and the right-going
RTW. This indicates the appearance of both left-going and
right-going RTW. The third and the fourth eigenmode are
pairwise antisymmetric with respect top(1) and p(2), and

lead to corrections in the dominating pattern, given byp(1)

andp(2). It is interesting to note that in the coexisting spa-
tially reflected symmetric oscillation, which can be stabilized
by changing the initial conditions, the third and fourth eigen-
mode are dominant, while the first and the second eigenmode
provide slight corrections to the original. Additionally, the
fifth eigenmode represents the symmetry breaking mode,
which is visible in the original pattern~cf. Fig. 3!. It shifts
the pattern to one side.

For the state of spatiotemporal chaos, Fig. 11 shows the
transverse dependence of the six largest eigenmodes. The
transverse dependence of the eigenmodes reflects the pres-
ence of a number of different modulated standing wave pat-
terns which have all the same spatial frequency. However,
the ‘‘basic’’ standing wave pattern of the RTW, represented
by p(1) andp(2), is still present in the spatiotemporal chaotic
pattern. In time, those eigenmodes show chaotic oscillations.

VI. TWO TRANSVERSE DIMENSIONS

Thus far we have been considering the problem of RTW
and the excitation of complicated spatiotemporal dynamics
with one transverse spatial dimension. In the following, we
extend our discussion to the case of two transverse dimen-
sions. With an additional spatial degree of freedom, one
might expect the appearance of RTW and other transverse
patterns to be more diverse. In our two-dimensional simula-
tions we choose the following geometry. The grating wave
vector K̂ points along thex axis and the mixing beams are
displaced in thex-z–plane, i.e.,b5bx andby50. Here, we
restrict our discussion to I 3(x,y,z50)[I 30 and
I 4(x,y,z5d)[I 4d .

For b50.05 and for small values ofE0 ~up to E0' 1.4
kV/cm!, only stationary states~fixed points! are found. These
states appear as temporally constant values for the four
beams with Gaussian profiles~the center of the Gaussian is
placed atx52b/2 andy50 for I 30). At E051.5 kV/cm we

FIG. 13. Two-dimensional transverse pattern ofI 30 and I 4d ~same parameters as in Fig. 12!. The patterns to the left are recorded at
t521.6t. From left to right, the time interval between the successive patterns is 0.4t.

FIG. 14. Spatiotemporal dynamics ofI 30 after transients have
died away. The two-dimensional plane is cut aty50. Here,
b50.0001,f50.01, andE051.8 kV/cm. The other parameters are
the same as in the case of one transverse dimension.
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observe the onset of spatiotemporal oscillations. Figure 12
presents periodic spatiotemporal dynamics ofI 30, where the
transverse planex-y is cut along they50 axis. The basic
structure, similar in appearance to the left-going RTW and
right-going RTW of the one-dimensional transverse case, is
visible. However, the waves do not collide and do not form
standing wave patterns in the middle as seen in the ‘‘fish-
bone’’ oscillation. The reason for this difference can be de-
duced from a direct visualization of the two-dimensional in-
tensity patterns in the spatial dependence ofI 30 ~Fig. 13!. We
observe the following dynamical behavior. Initially, a bright
spot is generated off-the-center, it moves towards the center,
in whose vicinity it is absorbed. Subsequently, a bright spot
arises at the opposite side, executing the same kind of mo-
tion. A similar arrangement of periodic oscillating spots dis-
tributed along one transverse direction has recently been ob-
served in a self-pumped phase conjugator@20#. Note that the
patterns ofI 4d are partially anticorrelated with the corre-
sponding patterns ofI 30.

Whenb is reduced tob50.001, an increase ofE0 leads
to complicated spatiotemporal dynamics. This is clearly vis-
ible in Fig. 14, where the temporal evolution ofI 3 at
E051.8 kV/cm is illustrated. Here a bright spot in the center
oscillates in alternation with two spots of lower intensity
located at both sides of it. The sequence of corresponding
two-dimensional spatial patterns ofI 30 andI 4d are plotted in
Fig. 15. The dynamic evolution ofI 30 represents a periodic
oscillation between two different modelike structures, with
different spatial symmetries. This kind of periodic alterna-
tion was also observed experimentally in a unidirectional PR
ring resonator@7#. Further increase ofE0 leads to increased
complexity of the spatiotemporal dynamics, however as long
asb is sufficiently small, the inversion symmetry of the pat-
terns is conserved. Here the patterns are similar to the phase-
singularity crystals discussed in laser systems@21#. With b
increased, we observe complicated dynamics pertaining to
symmetry broken patterns.

We should mention that, although work has been started
concerning spatiotemporal chaos in two transverse dimen-

sions, progress is slow, owing to high computational de-
mands and costs. Work in that direction has been started.

VII. CONCLUSIONS

In summary, we have demonstrated the appearance of
running transverse waves in a model of optical phase conju-
gation through the process of photorefractive four-wave mix-
ing. Our model includes diffraction, as well as noncollinear
propagation of the mixing beams. We have shown that the
presence of an external static electrical field~which causes a
phase shift in the coupling and a shift of the optical fre-
quency of the PC wave! leads to complicated spatiotemporal
oscillations, when transverse dimensions are taken into ac-
count. Further, an increase inE0 leads to a regime of irregu-
lar oscillations. This state displays spatiotemporal chaos re-
sembling chaotic wandering of defectlike structures~line
defects!.

To characterize the observed spatiotemporal dynamics,
we employ two different nonlinear dynamical methods, the
spatiotemporal cross-correlation function and the singular
value decomposition. They provide mutually consistent in-
formation when applied to our data. We have shown that the
cross-correlation function decreases rapidly in space and
time with increasing values ofE0 . At the same time, the
number of relevant eigenmodes obtained by SVD~which is
related to the intrinsic degrees of freedom! increases with
increasingE0 . SVD turned out to be a convenient tool not
only for the quantification of spatiotemporal complexity, but
also for the identification of the dominant nonlinear eigen-
modes of the interacting beams. RTW is described by two
basic eigenmodes, which oscillate regularly in time. These
basic eigenmodes are essential elements in all presented pe-
riodic spatiotemporal oscillations, especially for the states
where two RTW collide. They also appear and persist as the
most dominant eigenmodes in the spatiotemporal chaotic re-
gime. Thus, the RTW is a basic element of the spatiotempo-
ral dynamics during the process of 4WM.

FIG. 15. Two-dimensional transverse pattern ofI 30 and I 4d ~same parameters as in Fig. 14!. The patterns are taken att511t,
t511.4t, t511.6t, t512t, andt512.4t, respectively.
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Finally, the appearance of RTW in two transverse
dimensions has also been observed. Here, the left-going and
right-going RTW appear as two bright spots generated off-
the-center, moving alternatingly towards the center in whose
vicinity they get absorbed. We observe further periodic al-
ternation between different modelike structures, as well as
inversion symmetric patterns, similar to phase-singularity
crystals. Such spatiotemporal phenomena are under current
investigation.
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