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Running transverse waves in optical phase conjugation
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We investigate the dynamics of four-wave mixing processes in photorefractive crystals in paraxial approxi-
mation, assuming the phase-conjugation condition. By applying an external electric field to the crystal, we
observe an onset of instabilities in the phase-conjugate beam, the generation of running transverse waves, their
mutual collisions, and a continuous transition to a regime of spatiotemporal chaos. This state appears as
irregularly oscillating defectlike patterns in one transverse dimension. Running transverse waves are identified
as the basic modes of the system giving rise to a secondary instability. The observed regular and irregular
spatiotemporal oscillations are characterized by means of a spatiotemporal cross-correlation function and
singular value decomposition. In the extension to two transverse dimensions the possibility of an even greater
variety of regular and irregular patterns is obsenj&1.050-29476)03206-4

PACS numbd(s): 42.65.Sf, 42.65.Hw

[. INTRODUCTION of our knowledge. Indeed, they should readily be observable
in PR optical phase conjugatiq®@PQ), since the necessary
Transverse and dynamical effects in active and passivengredients(detuning of PC waves, running gratings, and
optical systems have recently become a topic of increasegomplex couplingsconstitute a part of the normal operation
interest[1]. In addition to displaying a wealth of complex Of PR conjugators. We observe RTW in numerical simula-
physical phenomena, they represent convenient systeni@ns of OPC through the process of four-wave mixing
(both theoretically and experimentalljor investigation of ~(4WM) in PR crystals. The left- and the right-going RTW
possible routes to spatiotemporal chaos. Various scenariPPear, collide, and build up localized standing waves in the
leading to complex spatiotemporal dynamics are often medilfansverse profiles of the mixing beams. We observe a tran-
ated by defects in the transverse amplitude distribution ofition to spatiotemporal chaos associated with oscillating de-
light beams, hence providing a link to other fielgsich as fectl[ke patterns in thg transverse plane. This transition to
fluid dynamics and condensed matter physigsere defects spatiotemporal chao_s is characterlzed by means of spatiotem-
also play a prominent role in the onset of turbulence. poral cros_srcorrelatlon functions’CCF) and singular value
Photorefractive(PR) oscillators or phase-conjugatC)  decomposition(SVD). _
mirrors are essential parts of any envisioned device employ- The paper is composed as follows. Section Il presents the
ing optical phase conjugatig®®PO [2]. Owing to their slow tran§verse model of 4WM in PR crystals in pgraX|aI approxi-
response times, PR oscillators provide an opportunity for anation. Th_e occurrence of RT\_/\( and thelr_ interactions are
slow-motion study of pattern dynamics, allowing for an Ob__dlscussed in S_ec. lll. The transition to spatiotemporal chaos
servation of complex spatiotemporal pattern formation iniS analyzed with the help of CCtSec. IV) and SVD(Sec.
real time. This advantage led to the first experimental obserY)- Some results for two transverse dimensions are presented
vation of optical vorticegphase singularitiosn a nonlinear N Sec. VI. Section VII concludes the paper.
optical system, using a unidirectional ring resonator with a
PR gain[3]. In the following years there have been many ll. MODEL EQUATIONS
theoretical and experimental studies of spatiotemporal dy-
namics in unidirectional PR ring resonat¢#g, bidirectional
PR ring resonatorfs], and PC resonators with PR crystals
acting as PC mirror$6]. While some phenomena, such as
vortex dynamics, periodic alternation, and chaotic itineranC)P
of cavity modes[7] are well understood, the excitation of v S o2 8
running transverse waveé&TW) on the route towards spa- ALt BK-ViALHTVIAL=QAs, (13
tiotemporal chaos has not been investigated so far, to the best

In the following we will consider the standard photore-
fractive 4WM processes in transmission geomégj (Fig.

1). Basic equations describing the process in paraxial ap-
roximation are of the fornp9]

I Ax+ BK - V1A, —i pV2A,=Q* A, (1b)
* v 1 2 —
Electronic address: joerg@optics.iap.physik.th-darmstadt.de A3~ BK-V1Az—1 pVTA3= —QA, (19
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X - tions, to eliminate the possibility of looking at numerical
Q rather than physical instabilities. Results obtained by both
methods are in excellent agreement. Boundary conditions
play an important role in every investigation of RTW and
Ay vortex dynamics. In fact, some of the results on pattern for-
mation due to the occurrence of traveling waves reported
Q z elsewherd12] are obtained only by assuming rather special
A, boundary conditions. Here the boundary conditions are cho-
sen consistently with the corresponding experimental condi-
Aj \ tions. Displaced Gaussian beams are chosen for incident
fields at the opposite faces of the crystal, in combination with
“open” lateral sides(no reflecting or periodic boundary con-
T ditions). Transverse patterns appear spontaneously. To pre-

vent aliasing and overshooting problems, the fieAdsare

. smoothly damped at the edge of the transverse numerical
FIG. 1. Geometry of the four-wave mixing process. The pumpgrid Thus far, the input beams are given by

beamsA; andA, enter the crystal from the opposite side. is the
signal beam and\; is the phase-conjugated replicadf. zisthe A, (X,z=0)=C,,G(—{,p), Ax4dXx,z=d)=C,4G({,p),
propagation direction and is one of the transverse directions, the 3
other, y, being perpendicular to the-z plane.Q represents the
amplitude of the transmission grating amMlis the high-voltage

whereC,_, are the amplitudes of the Gaussian beams inci-

source of the static electric fiel,. d_ent upon the crystal ar@d(¢,p) is the Gaussian beam func-
t|(2)n [9]. ¢ rgpresents t?e beam curvature parameter and
~ . =(x=*B/2) + (y=* Bl2)-.
IP BR VA OVIA= Q7 A, g PP ER) U6

The parameters used in the simulations are chosen as fol-
lows. The longitudinal coordinatez) is normalized to the
crystal lengthd and the transverse coordinatesy() are nor-
malized to the beam diameteEy =100, E,=5, Ep=1
given in kV/cm), y,d=—4, and¢=0.0005. The amplitudes

whereA(x,y,z) are the slowly varying envelopes of the four
beamsyV? is the transverse Laplacian, arids a measure for
the magnitude of diffraction. The operathir V; is the di-
rectional derivative in the transverse plane along the grating . input beams ar€;=0.3, C,=0.7, andC,=0.15
wave vectolK, andg is the relative transverse displacementwherea$3 is chosen to be sma;slln our simulations 109,'
caused by the noncollinear propagation of the four beams. I]hst enough to provide a seed for the PC beaRmactically,
scaled coordinateg=6/5, whered is the half angle at the 5 pc condition is assumed. With such a set of parameters,
beam intersection andlis the angular spread of the interact- g in particular without applying an external electric field
ing beamsQ is the complex amplitude of the transmission (i.e., Eo=0), we do not observe instabilities of any kind.
grating in the crystal, whose temporal evolution is approxi-
mated by a relaxation equation of the fofd0] IIl. RUNNING TRANSVERSE WAVES
AND THEIR INTERACTION

Ep+EqtiEy

Em+Ep+iEg The application of an external electrical fiel, across

vo Eq+Ep  Ep+iE, the PR crystal changes the dynamical behavior of the PC
_ Y0 "

(ALAL +ASA,), process. Normally, an external field is applied to restore a
/2 phase shift between the interference fringes and the re-
(2  fractive index gratings, enhancing the process of phase con-
jugation. In our case, the situation is reversed. Starting with a
where 7 is the relaxation time constant of the gratirg,is degenerate oscillation and a/2 shift, we apply the field
the total light intensity, and, is the bare PR coupling con- E, to produce frequency detuning, and to study the destabi-
stant.Ep, Ey, andEy are the characteristic internal fields |ization of the PC process. As the electric field is increased,
describing the electronic processes in the cryfatording  we observe the appearance of basic RTW, their collision, and
to Kukhtarevet al. [10]), whereasE, is the static external complicated dynamics resulting from their interactions, lead-
electrical field applied to the crystal. Note tlig effectively  ing to spatiotemporal chaos. Note that chaos in the temporal
renders both the coupling constapt and the relaxation rate regime on the basis of a plane-wave model has already been
(7~') complex. Hence the external fiel, exerts a pro- investigated13]. However, we concentrate on the combined
found influence on the process of OPC, e.g., by breaking thixfluence of spatial and temporal effects.
frequency degeneracy, allowing for the buildup of running  Figure 2 displays the basic right-going and left-going
gratings and the appearance of RTW. Note further that irRTW. The spatiotemporal dynamics of the PC intensity
writing Eq. (2), we assume that the wave number of the|,(x,z=0)=I5, is shown for the value 0E,=1.8 kV/cm
grating K is small compared to the Debye screening waveand for 3=+ 0.05, in one transverse dimension. Sources of
numberkpy [11]. Consequently, the implicit assumption of waves are located at the left transverse edge for the right-
neglecting the transverse derivatives@fis well justified. going RTW, and at the right transverse edge for the left-
Equations(1) and (2) are solved numerically using the going RTW. The RTW travels transversally towards the
beam propagation method described[®]. An alternative beam center and is absorbed in a sink at the opposite trans-
Crank-Nicholson procedure is employed in unstable situaverse edge.

1y Ep Ey+Ep+iE,
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FIG. 2. Spatiotemporal dynamics ¢£(x,z=0)=I5, as mea-
sured at the surface of the crystalzat 0. Bright regions represent
high light intensity, dark regions indicates low intensi. Right-
going RTW with 8=0.05. (b) Left-going RTW with 8= —0.05.
E,=1.8 kV/cm. In all figures the transverse coordinateg/) are
normalized to the beam diameter.

Reduction in the value g8 leads to the combined appear-
ance of both left-going and right-going RTW. For suffi-
ciently small values of3 the initial conditions(and not the

sign of B) determine the appearance of left-going and right-

going RTW. For3=0.001 and for low values dE, (up to
Eo~1.2 kVicm), a stable oscillation(fixed poiny with

Gaussian transverse profiles for the four beams is found. At

Eo=1.21 kV/cm this stable oscillation loses stabil{gig. 3),
and a “fish-bone” instability arises, in which a left-going
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and a right-going RTW collide. In this case sources are lo-

cated at both transverse edges and the sink of the RTW ap-

pears as a localized standing wave in the center of the beam.
In order to provide direct information on the spatiotempo-

-50 =25 0.0 2.5 5.0
X

FIG. 4. Transverse intensity and phase profiles in the middle of

ral dynamics of RTW, we plot the transverse intensity andhe PR crystal £=d/2). (a) Intensity of the right-going RTW with

phase of the right-going RTW and the “fish-bone” oscilla-
tion (Fig. 4). The tilt of the phase); of the beanl ; indicates
the size and the direction of the transverse wave vdgtof
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FIG. 3. Spatiotemporal dynamics df, with 8=0.001 and

E,=1.21 kV/cm. (a) Onset of the spatiotemporal oscillatiofh)
“fish-bone” oscillation after transients have died away.

the parameters of Fig.(@. (c) Intensity of the “fish-bone” oscil-
lation (parameters as in Fig.)3The dashed lines are the corre-
sponding intensity profiles of, at z=d/2. The corresponding
phase profilesp; at z=d/2 of the right-going RTW(b) and the
“fish-bone” oscillation(d) are also shown. The intensity is given in
units of the sum of the incident pump intensitite3, (- C,).

RTW. Figure 4d) of the “fish-bone” oscillation depicts the
collision of the right-going and the left-going RTW, and the
resulting standing-wave pattern in the middle where the
phase profile is flat.

An increase irE, leads to an increase in the amplitude of
the left-going RTW, and a decrease in the amplitude of the
right-going RTW(Fig. 5. Consequently, the resulting stand-
ing wave is shifted away from the center of the beam. The
inverted symmetric oscillation with respect to the center
(x=0) axis can be stabilized by changing the initial condi-
tion for Q. For values ok, beyond 2.0 kV/cm both periodic
oscillations lose their stability. A regime of irregular oscilla-
tions is established fdEy= 2.2 kV/cm, and the state of spa-
tiotemporal chaos is reached f6g= 2.3 kV/cm. This state is
characterized by chaotic wandering of a defectlike structure
(line defecj, located where the modulated left-going and
right-going wave collide. Similar scenarios are observed in



4522 LEONARDY, KAISER, BELIC, AND HESS 53

A

-

FIG. 5. Spatiotemporal dynamics bf, with
B=0.001 anda) Ey=1.35, (b) E;=2.2, and(c)
Ey=2.3 (Eq given in kV/cm).
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the solution of the one-dimensional complex Ginzburg-correlation stripes, whereas a rapid decrease of the correla-
Landau equatioifi14] as well as in fluid wave patter45].  tion function is observed fax,=0.75[Fig. 6(c)]. Finally, in
the spatiotemporal chaos, a rapid decreasg of space and
IV. SPATIOTEMPORAL CORRELATIONS time is observedFig. &d)].
To highlight the role and define a measure for the trans-

The calculation of correlation functions facilitates the un-yerse complexity, we determine the maxima®@fwith re-
derstanding of complex spatiotemporal dynanfit6]. We  gpect to all delay times,

calculate the cross-correlation functiG@CF), defined as
C Xo) =Mmax,C(Xy, 7). 5
(81 (Xe+Xo,t") Bl (Xe—Xo,t' + 7)1 madXo) = MaX,C (X0, 7) ®
C(Xg,m)= VOO (%ot %o b )7 ( ) Z(XC_XO-t,»T’ Cma)g thus represents a measure of _transverse correlations.
(4  Plotting Cyn,, versus the transverse distanggallows for a
guantitative comparison of different spatiotemporal states
where(- - - )1 is the average over the whole observation time
T, and 81 (x,t") =1(x,t") = (I(x,t") )7 is the intensity devia-
tion at the poinix. Thus, the correlation function determines
how much the output signal at the reference pgjnat x, and
at the timet’ =t/ 7 is correlated to the signal at the transverse
positionx.—Xq and at the timé’ + 7. X, represents the spa-
tial reference point.

The spatiotemporal dynamics of; is considered for a
period of t=400r intervals after transients have “died
away.” We assume this to be representative of its long-time
behavior. Figure 6 displays contour plots of the spatiotempo-
ral CCFC. Dark regions indicate anticorrelation, bright re-
gions indicate high correlation. The reference poigtis
placed in the center of the beam at the exit face of the crystal
(Xc=— BI2 for | 3p). CCF of the basic RTWnot shown herge
is a direct image of the original pattern, displaying periodi-
cally oscillating and spatially tilted stripes of high correlation
(indicating propagation of RTW CCF of the “fish-bone”
oscillation[Fig. 6(a)] is periodic in time. A spatial correla-
tion length cannot be identified, indicating that the left-going
RTW and the right-going RTW are decoupled in space. Two
different regions can be identified in the correlation function
of the periodic oscillation state &,=1.35 kV/cm [Fig.
6(b)]. In the central region (€& x,=<0.75) tilted stripes indi-
cate that the left-going RTW is dominant. Here a nonzero
correlation length is found, while the typical correlation time
is the same as for the “fish-bone” oscillation. In the spatially X
decoupled regionx;=0.75), the spatiotemporal evolution °
of C is similar to the one seen in the case of the “fish-bone”  FIG. 6. Gray scale plots of the spatiotemporal cross-correlation
oscillation, indicating the presence of both Ieft-going andfunction C(xq,7) of I3, versus the spatial reference poig and
right-going RTW. CCF pertaining to the irregular oscillating the delay time#. (a) The “fish-bone” oscillation of Fig. &).
state atEy= 2.2 kV/cm shows a slight decrease of the high (b)—(d) The periodic and chaotic oscillations of Fig. 5, respectively.
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FIG. 7. Temporal maxim&,,,, of the spatiotemporal cross-
correlation function versus the transverse distagoextracted from -25 O)'(O 2.5
the data of Fig. 6:Ey=1.21 (solid line, E;=1.35 (dotted,
Ey=2.2 (dashefl andE,=2.3 (chain-dotted (E, given in kV/cm). (¢) 0.030 1
. .. . ® 0.015 .J- _::, :‘: SRR
(Fig. 7). Cpax pertaining to the RTW and the “fish-bone” = HRRAEIaE
oscillation is constant and/or slightly oscillating below o= 0000 g PRI FREL LTV
Cmax=1, indicating spatiotemporally ordered states. In the © —0.015 I [IRHATI I
Cmax corresponding to the periodic oscillation Bg=1.35 PRVEERV R R R R
kVicm, we can recognize the two different regions men- —0.030 ‘ ‘
tioned above. Note tha€C, ., in the decoupled region is 0 10 20 30 40
much smaller thai€,,, .« in the center region. For the irregu- (d) 0.0030
lar oscillating state we observe a decreas€gf,, with in-
. X . : ~  0.0015 ¢}
creasingkq, and for the final spatiotemporal chaotic state we g, i
observe an exponential decay, which indicates the presence .  0.0000
of spatiotemporal chads,17]. < i
P P 48.17 © —0.0015 FhEtkEEELTEL
-0.0030 ‘
V. DYNAMICS OF COHERENT STRUCTURES 0 10 20 30 40
t/T

In order to quantitatively characterize the large variety of
different spatiotemporal oscillations noticed in our 4WM

; ; ; . FIG. 9. Eigenmodes of the intensity, of the RTW of Fig. Za).
simulations, we apply the singular value decomposition 0
(SVD) or the Karhuﬂre)rz/—Lbﬁe dec%mpositiolﬁ18] SVDphas (a) The first(larges} e(igenmode(solid line) p'(x) and the second
: . fiesi oo eigenmode(dashe X). (b) The third eigenmodésolid line)
proven a powerful tool in determining and distinguishing (g)(x) anil( o fguprth(e)ige(ninod(ﬁashed g(“)(x). ihe supe)r-
dlflzferehnt Zpta“gt?m?gral _degT(?es of ]:gteBd(l)g' I\BNhICh aretmo scripts denote the respective eigenvalu€8. (c) Time dependence
oren dar OI etec h yglsqa InSpect q - ytt):or_npu E) of the expansion coefficients? (solid line) anda‘® (dashedl (d)
ing and analyzing the basic eigenmodes, we obtain a ettelrime dependence of the expansion coefficiextts (solid line) and

a(dashed

insight into the mechanisms leading to complex and chaotic
spatiotemporal dynamics.

The procedure for the SVD starts with the calculation of
the spatial covariance matrix of the transversally discretized
intensity distribution

Cr 1 =(u(Xy,tHu(x; ,t" )1, (6)

wherek,1=1,2,... N is the number of the discrete trans-
verse pointsx, and u(xy,t) is the intensity fluctuation
u(x,t)= 81 (x,t)/J{I(x,t) )1, wheredl is defined in the pre-
ceding section. Eigenvectop® of C,, represent an opti-
mal basis for expansion dix,t). They maximize the pro-
jected mean ((p,u)?)y, where @,u)==,p(x)u(X,t)
denotes the scalar product, i.e., the eigenvectors provide a
minimum number of eigenmodes needed in the expansion.
By construction,Cy , is symmetric and its eigenvaluasd®

FIG. 8. Spectra of the normalized eigenvalué®) calculated
from the data ofl 55: filled dots, RTW[Fig. 2(a)]; crosses, “fish-
bone” oscillation[Fig. 3(b)]; rhombuses, irregular oscillatidiFig.
5(b)]; triangles, spatiotemporal chaotic stékég. 5(c)].
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FIG. 10. Eigenmodes of the intensity, of the “fish-bone” FIG. 11. Eigenmodes of the intensity, of the spatiotemporal

oscillation of Fig. 3b). (@) p™(x) (solid), p®(x) (dashedl (b)  chaotic state of Fig. ®). (@ p™P(x) (solid), p@(x) (dashed (b)
P (x) (solid), p¥(x) (dashedl (c) pP(x) (solid) and p®(x)  p@)(x) (solid), p@(x) (dashedl (c) p@(x) (solid) and p®(x)
(dashedl (dashedl

determine the probability of the occurrence of the corre-gpatiotemporal complexity of the dynamic states considered
sponding eigenvectogs® in the intensity fieldu(x,t). Inthe  thys far, provided by SVD, agrees well with the results ob-

following, the —eigenvalues are normalized by tained by analyzing the spatiotemporal correlations of those
{(u,u))r=3M_ N\ The N eigenvectorp(?(x,) form a  siates.

complete orthonormal sét,p(“(x,)p'”(x)=5% and are In Fig. 9 the transverse dependence of the four largest
used as basis functions for an expansion of the original inejgenmodes and time-series of the corresponding expansion
tensity distribution[19]: coefficients of the RTW is shown. Boif") andp‘® repre-

81 (X, 1) =1(x,H) = (1 (%, D)1= 2 a()p¥(xy), Io(y=0)

@ 40
(7
where the time dependent expansion coefficients are given 30
by
a0 =2 (%0 81 (%, ). ®) < 20

Figure 8 exhibits the spectrum of the normalized eigen-
values\(?, for the dynamic states considered thus far, the 10
RTW, the “fish-bone” oscillation, the irregular oscillation,
and the spatiotemporal chaotic state. For the RTW and the

“fish-bone” oscillation the eigenvalues decrease rapidly 0
with increasinga. The two largest eigenmodes contain more —25 0.0 25
than 97% of the original spatiotemporal information. Note X

that the eigenvalues of RTW are arranged in pairs. Eigen-

mode spectra of the chaotic states indicate that the number of FiG. 12. Spatiotemporal dynamics b, after transients have
modes needed for a reconstruction of the original oscillatioried away. The two-dimensional plane is cutyat0, 8=0.05,
increases, pointing to an increase in the number of intrinSixy=0.01, andE,=1.5 kV/cm. The other parameters are the same as
cally excited degrees of freedom. The information on thein the case of one transverse dimension.
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FIG. 13. Two-dimensional transverse patternl gf and|,4 (same parameters as in Fig.)1The patterns to the left are recorded at
t=21.6r. From left to right, the time interval between the successive patternsis 0.4

sent a transverse standing wave, with a relative phase shift @ad to corrections in the dominating pattern, givenpy

/2. The corresponding expansion coefficients also show gndp(@. It is interesting to note that in the coexisting spa-
relative phase shift ofr/2, indicating the propagation of tjally reflected symmetric oscillation, which can be stabilized
RTW. The third and the fourth eigenmode have both spaby changing the initial conditions, the third and fourth eigen-
tially and temporally the structure of higher harmonic oscil-mode are dominant, while the first and the second eigenmode
lations with respect to the two largest eigenmodes, and proprovide slight corrections to the original. Additionally, the

vide very weak corrections to the original. fifth eigenmode represents the symmetry breaking mode,
For the dynamic state where we observe the “fish-bone”which is visible in the original patterfcf. Fig. 3. It shifts
oscillation, the results obtained by applying the SVD analy-the pattern to one side.
sis are more diverséFig. 10 than in the case of RTW. The  For the state of spatiotemporal chaos, Fig. 11 shows the
transverse dependence of the two largest eigenmodes cleatiinsverse dependence of the six largest eigenmodes. The
displays the collision of the left-going and the right-going transverse dependence of the eigenmodes reflects the pres-
RTW. This indicates the appearance of both left-going antknce of a number of different modulated standing wave pat-
right-going RTW. The third and the fourth eigenmode areterns which have all the same spatial frequency. However,
pairwise antisymmetric with respect @) and p®), and  the “basic” standing wave pattern of the RTW, represented
by p™ andp‘?), is still present in the spatiotemporal chaotic
Iu(y=0) pattern. In time, those eigenmodes show chaotic oscillations.
40 —

VI. TWO TRANSVERSE DIMENSIONS

30 Thus far we have been considering the problem of RTW

and the excitation of complicated spatiotemporal dynamics
with one transverse spatial dimension. In the following, we
extend our discussion to the case of two transverse dimen-
sions. With an additional spatial degree of freedom, one
might expect the appearance of RTW and other transverse
patterns to be more diverse. In our two-dimensional simula-
tions we choose the following geometry. The grating wave
vectorK points along thex axis and the mixing beams are
displaced in thex-z—plane, i.e. 8= B, and 8, =0. Here, we
0 25 restrict our discussion to I3(x,y,z=0)=l5 and
X [4(X,y,z=d)=144.
For 8=0.05 and for small values d&, (up toEy~ 1.4

FIG. 14. Spatiotemporal dynamics bf, after transients have KV/cm), only stationary state§ixed points are found. These
died away. The two-dimensional plane is cut w0. Here, States appear as temporally constant values for the four
B=0.0001,¢=0.01, andE,=1.8 kV/cm. The other parameters are beams with Gaussian profiléthe center of the Gaussian is
the same as in the case of one transverse dimension. placed ax=— B/2 andy=0 for | 35). At E;=1.5 kV/cm we

20

L/

10

0
-2.5

o
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FIG. 15. Two-dimensional transverse patternlgf and |,4 (Ssame parameters as in Fig.)14&he patterns are taken at 117,
t=11.4r, t=11.6r, t=127, andt=12.4r, respectively.

observe the onset of spatiotemporal oscillations. Figure 18i0ns, progress is slow, owing to high computational de-
presents periodic spatiotemporal dynamicsgf where the mands and costs. Work in that direction has been started.
transverse plan&-y is cut along they=0 axis. The basic

structure, similar in appearance to the left-going RTW and

right-going RTW of the one-dimensional transverse case, is VIl. CONCLUSIONS

V|S|ble_. However, the Wayes do n_ot collide and (_jo not io_rm In summary, we have demonstrated the appearance of
standing wave patterns in the middle as seen in the “fish-

bone” ilation. Th for this diff be d running transverse waves in a model of optical phase conju-
done q ?SC' atlg.n. € ree}§on_ or tf ";‘] : erecl;ce can eI .e'gation through the process of photorefractive four-wave mix-

uced from a |rect V|sua!zat|on of the two- imensiona In'ing. Our model includes diffraction, as well as noncollinear
tensity patterns in the spatial dependenck;pfFig. 13. We

he followi ical behavi itall oh propagation of the mixing beams. We have shown that the
observe the following dynamical behavior. Initially, a bright o qence of an external static electrical fihdich causes a

spot is generated off-the-center, it moves towards the centefyaqe shift in the coupling and a shift of the optical fre-
in whose vicinity it is absorbed. Subsequently, a bright Spoﬁuency of the PC wavdeads to complicated spatiotemporal
arises at the opposite side, executing the same kind of MQyqiations, when transverse dimensions are taken into ac-
count. Further, an increase ky, leads to a regime of irregu-

qi i d oh : N hat th li’ér oscillations. This state displays spatiotemporal chaos re-
servedin a sefli-pumped phase _conjug@ﬂmj. _otet atthe sembling chaotic wandering of defectlike structurgise
patterns ofl,4 are partially anticorrelated with the corre- defects

sponding patterns dfs. To characterize the observed spati i
) _ . patiotemporal dynamics,
Wheng is reduced 195=0.001, an increase di, leads we employ two different nonlinear dynamical methods, the

to complicated spatiotemporal dynamics. This is clearly Vis's atiotemporal cross-correlation function and the singular
ible in Fig. 14, where the temporal evolution ¢f at b P 9

Eo=1.8 kV/cm is illustrated. Here a bright spot in the center:,/arlrl:qe t?encsvrgpgsmo“. ;’?ey prrtd)v[[devr\? Utrl{' a\l/ly Cr? nv?/I:ttehntt 't?]
oscillates in alternation with two spots of lower intensity ormatio €n applied to our data. Vve have sho atthe

located at both sides of it. The sequence of corresponding©SS-correlation function decreases rapidly in space and
two-dimensional spatial patterns b, and| 4 are plotted in UM With increasing values d,. At the same time, the
Fig. 15. The dynamic evolution df,, represents a periodic Number of relevant eigenmodes obtained by SWich is
oscillation between two different modelike structures, with _related_to the intrinsic degrees of freed)omcre_ases with
different spatial symmetries. This kind of periodic alterna-increasingq. SVD turned out to be a convenient tool not
tion was also observed experimentally in a unidirectional PRonly for the quantification of spatiotemporal complexity, but
ring resonatof7]. Further increase df, leads to increased also for the identification of the dominant nonlinear eigen-
complexity of the spatiotemporal dynamics, however as longnodes of the interacting beams. RTW is described by two
as 3 is sufficiently small, the inversion symmetry of the pat- basic eigenmodes, which oscillate regularly in time. These
terns is conserved. Here the patterns are similar to the phaskasic eigenmodes are essential elements in all presented pe-
singularity crystals discussed in laser systd@i. With 8 riodic spatiotemporal oscillations, especially for the states
increased, we observe complicated dynamics pertaining tahere two RTW collide. They also appear and persist as the
symmetry broken patterns. most dominant eigenmodes in the spatiotemporal chaotic re-

We should mention that, although work has been startedime. Thus, the RTW is a basic element of the spatiotempo-
concerning spatiotemporal chaos in two transverse dimerral dynamics during the process of 4WM.
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