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Exact solution to photorefractive and photochromic two-wave
mixing with arbitrary dependence on fringe modulation
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An exact solution to the slowly varying envelope wave equations for two-wave mixing with both photorefractive
and photochromic gratings present and with an arbitrary dependence of the gain and absorption on the fringe
modulation is obtained.  1996 Optical Society of America
When a two-wave laser interference pattern illumi-
nates a photorefractive crystal, two kinds of grating are
generated in the crystal, photorefractive (PR) gratings
induced in the refractive index and photochromic (PC)
gratings induced in the absorption coeff icient. Most
attention is focused on the PR gratings, since by virtue
of their py2 shift with respect to the interference pat-
tern they cause a variety of interesting phenomena.
Absorption gratings, being exactly in phase (or out of
phase) with the fringe pattern, cause increased absorp-
tion and as such are generally avoided.1 However, it
was recently realized that a combined action of the two
gratings can lead to enhanced diffraction efficiency in
some sillenite PR crystals.2 It was also noted that,
curiously, two-wave mixing with pure PC gratings in
the transmission geometry (TG) is formally equivalent
to two-wave mixing with pure PR gratings in the ref lec-
tion geometry3 (RG). And last, but not least, it was
realized that a complete description of two-wave mix-
ing in PR crystals with strong coupling and depleted
pump requires the inclusion of both the absorption and
the dependence of couplings on the fringe modulation
depth.

I provide here an exact solution of the two-wave mix-
ing equations with both kinds of grating present and
with an arbitrary dependence of the coupling constant
and the absorption coefficient on the modulation depth.

We proceed right to the crux of the problem—the
solution of two-wave mixing equations in the slowly
varying envelope approximation3:
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Here I1 and I2 are the intensities of copropagating or
counterpropagating laser beams mixing in the crystal,
a0 is the linear absorption, G is the coupling coefficient
to the PR phase gratings, and a is the coupling coef-
ficient to the absorptive PC gratings. I is the total
intensity, and s ­ 61 is the parameter controlling the
geometry of mixing. The prime stands for the deriva-
tive along the propagation direction; hence for s ­ 11
the transmittion (copropagating) geometry is in force,
whereas for s ­ 21 the ref lection (counterpropagat-
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ing) geometry is in force. We treat these geometries
equally.

In writing Eqs. (1) a py2 phase shift between the
intensity interference fringes and the refractive-index
gratings is assumed (as is usual for PR gratings),
whereas a zero phase shift is assumed for the
absorptive gratings (also usual for PC gratings).
These assumptions simplify the problem of phases
of the interacting beams (making them constant
throughout the crystal). An ingredient that makes
the problem of solving these equations more inter-
esting is the allowance for functional dependence of
the parameters G and a on fringe modulation. As
is known,3 these parameters are constant only in the
lowest-order (Kukhtarev) approximation, in which
the space-charge field responsible for the appearance
of gratings is directly proportional to the fringe
modulation m ­ 2sI1I2d1/2ysI1 1 I2d. The Kukhtarev
approximation4 is valid for small modulation depth.
For arbitrary modulation depth, G and a should be
considered functions of m, and an accepted form of
presenting these functions is

Gsmd ­ Gs
fxsmd

m
, asmd ­ as

fxsmd
m
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where Gs and as are the saturation values of the cou-
pling constant and absorption and fxsmd is the model
function introduced by Refregier et al.5 to account for
the deviation of the Gsmd dependence from a straight
line. Even though the forms of Gsmd and asmd suggest
a common physical origin for both gratings, this need
not be so, and the method of solution allows for an ar-
bitrary form of these functions. A number of forms for
the model function are currently in use sx ­ 1, 2, 3, 4,
starting with f1 ­ m for the Kukhtarev approxima-
tion)5 – 7; however, here we are not concerned much with
the form. Although these functions are important for
the phenomenological description of the physics of PR
effect, in the solution of wave equations they play no
role. The equations can be solved exactly for any form
of the model function. The solutions of Eqs. (1) pro-
ceed along the following leins.8

We first treat the TG, since as an initial-value
problem (both fields given on the z ­ 0 face of the
crystal) it is a bit simpler. The form of equations
 1996 Optical Society of America



184 OPTICS LETTERS / Vol. 21, No. 3 / February 1, 1996
suggests a change of variables:
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In the new variables the fringe modulation becomes a
function of only one variable, m ­ sechsF d. Even more
importantly, the equations separate:

2F 0 ­ a tanhsF d 2 G ,
2f 0

f
­ G tanhsF d 2 b , (4)

where b ­ 2a0 1 a. These equations present a set of
quadratures and as such are easily solved. Thus, for
an arbitrary dependence of G and a on m, one solves
the integral
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to obtain an implicit function zsF , F0d. Different
models lead to different functions. Not all models lead
to integrals that can be expressed in closed form. For
the Kukhtarev approximation the integration is easy:
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where Fc ­ tanh21sasyGsd and it is assumed that Gs .
as. Regardless of the form of the model function fxsmd,
a universal function f szd is found:
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The values of the integration constants F0 and f0 are
given in terms of the initial values for the intensities
I1sz ­ 0d ­ C1 and I2sz ­ 0d ­ C2, according to Eqs. (3).
Once the functions f and F are known, the intensities
are given by

I1 ­
f
2

expsF d , I2 ­
f
2

exps2F d . (7)

Before presenting some results, let us go through
the RG procedure. Making the same set of variable
transformations, one obtains the following integrals for
F and f :

2F 0 ­ G tanhsF d 2 b ,
2f 0

f
­ a tanhsF d 2 G . (8)

Again, one solves the integral for F :
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which, for constant G and a, becomes
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where bs ­ 2a0 1 as and Fc ­ tanh21sbsyGsd and it is
assumed that Gs . bs. Similarly, one obtains for f
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where, at one point, it is assumed that a0yG ø a0yGs.
The only complication is that in the RG the integra-

tion constants F0 and f0 are not so readily obtained as
in the TG. Now we have two-point boundary values
for the intensities I1sz ­ 0d ­ C1 and I2sz ­ dd ­ C2,
where d is the thickness of the crystal. One finds f0
from the relation f0 ­ 2C1 exps2F0d, and F0 is found
by solution of the following algebraic equation:
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where Fd is given by
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where d ­ asyGs. This solution must be performed
numerically. Similarly to the previous use of the
method,8 Eq. (11) allows for more than one solution
(three); however, only the solution located between the
two singular points on the right-hand side should be
retained. This complete the RG solution procedure.

I now discuss some of the consequences of the
solutions found. Given the simple explicit expressions
for intensities, one can derive interesting relations for
the quantities of experimental interest. For example,
the transmissivities in the TG along the directions of
beams 1 and 2 are given by
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where C ­ expfsG2
s 2 a2

s 2 2a0asddy2asg. Hence T1
is proportional to T

r

2 , where r ­ s1 1 ddys1 2 dd.
Likewise, in the RG one finds
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where now C ­ expfsa2
s 2 G2

s 1 2a0asddy2Gsg. Hence
the same relation as in the TG holds.
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Fig. 1. Functions F (solid curve), f (dashed curve), and m
(dashed–dotted curve) as functions of z in the TG.

Fig. 2. Functions F (solid curves), f (dashed curves),
and m (dashed–dotted curves) as functions of z in the
RG. Two branches are shown for each function; however,
only the lower branches should be taken into account.

Fig. 3. Intensities I1 and I2 as functions of z, for both the
TG and the RG, corresponding to the functions F and f
presented in Figs. 1 and 2. The solid and dashed–dotted
curves are I1 for TG and RG, and the dashed and the dotted
curves are I2 for TG and RG.
Next, consider the case a0 ­ 0. Looking at
Eqs. (6) and (10), one notes a high degree of sym-
metry. As mentioned above, these expressions are
written for the case Gs . as, which seems to be more
relevant. The case as . Gs is described by the same
expressions, but the cosh and the sinh functions should
be interchanged. Hence, one can formally go from
TG to RG by interchanging Gs and as. Thus a pure
PR case in TG is equivalent to the pure PC case in
RG and vice versa. These facts were first noted in
Ref. 3. The presence of linear absorption breaks this
symmetry. Also, the inclusion of boundary conditions
breaks the symmetry.

Some of the results are presented in Figs. 1–3. The
functions F szd, f szd, and mszd are shown for a typical
set of parameters: C1 ­ 1 (the unit of intensity),
C2 ­ 0.2, Gs ­ 3, as ­ 1, a0 ­ 0.5 (in cm21), and
d ­ 1 cm, in both the TG and the RG and for the
Kukhtarev approximation. Qualitatively similar
behavior is observed in all the models. Figure 1
presents the three functions in the TG. Even though
the graphs are drawn for both positive and negative z,
only the interval between z ­ 0 and z ­ d ­ 1 is phys-
ically relevant. Figure 2 presents the corresponding
situation in the RG. Multistability is observed, with
two branches for the function F szd [the function zsF d
is well behaved] and the two corresponding functions
for f szd and mszd. However, only the lower branch
of F szd is allowed (the one below Fc), since then F0 is
smaller than Fc, as required. Here Fc ø 0.805 and
F0 ø 0.467. The allowed functions f szd and mszd are
also the lower branches. One sees that, even though
the Kukhtarev approximation is assumed, m is not
small. This means that such an approximation is
not entirely self-consistent and that it is better to
use the complete model, with the provision for the
m dependence. Figure 3 depicts the corresponding
intensities I1 and I2.
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