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Multigrating phase conjugation: exact results
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Multigrating operation of degenerate four-wave mixing in photorefractive media is considered in the strong pump
regime. Closed-form expressions for the reflectivity are obtained for the cases of absorption and no absorption. An
arbitrary phase mismatch between the intensity interference fringes and the refractive-index gratings is allowed.

The purpose of this Letter is analytically to investi-
gate degenerate four-wave mixing (FWM) in real-time
holographic media when more than one refractive-
index grating is present. Such a situation is common-
ly encountered in experiments. 1-3 In fact, single grat-
ing operation is achieved only when' other grating
mechanisms are suppressed by special means (for ex-
ample, by a choice of polarizations or by application of
external electric fields).1 '2 On the other hand, multi-
grating operation is also envisaged as an efficient
mode of operation for high-capacity optical storage
elements. 3

According to the widely accepted theory of the pho-
torefractive effect,1 there are four contributions to the
intensity-induced index gratings in standard FWM
geometry: a large-spaced transmission grating, a
small-spaced reflection grating, and two additional
contributions, usually overlooked, coming from the
mixing of the pump beams and of the probe beam and
its conjugate. When the pumps are much stronger
than the probe and the' conjugate, the last contribu-
tion can safely be ignored. Then the pump beams are
not depleted by the probe or the conjugate beam, and
hence their evolution can be solved independently.
The four steady-state wave equations in the slowly
varying amplitude approximation are of the form

IA 1' = - yAlA2 *A2 - a IA1,
2

IA2*'= -7A1 A2*Al* + 2 IA2*,
2 2

IA 3' = YT(AlA 4* + A2*A3)A2

+ YR(Al*A 3 + A2A4*)A1 +aIA3,
2

1A4*f = YT(AlA 4 * + A2*A3)Al*

+ YR(Al*A3 + A2A4*)A2-IA4*,
2

sponding index grating. Other general assumptions
about the geometry, polarizations, etc. are assumed to
be the same as in Ref. 1, from which the equations are
taken. Our aim 'is to obtain an expression for the
reflectivity p = A3/A4* from these equations or, equiv-
alently, to solve the equations. To this end, we apply
some of the results on two-wave mixing from Ref. 4
and a procedure for exact treatment of FWM from
Ref. 5. The analysis proceeds along the following
lines.

Equations (la) and (lb) describe two-wave mixing
of the pumps and are solved exactly in Ref. 4. The
solutions are given in the form

1= 1
1 /2 exp(fo - yz +F),

12 = '/2 exp(fo - yz -F), (2a)

where the function F satisfies the following differen-
tial equation:

F' = Yr tanh F - a (2b)

and fo is a constant of little concern to us. The sum
phase of the pumps satisfies another equation:

\6'=-7 12-l
~'=-'i, +1I2 (la)

(3)

which can be solved once the intensities are known. It

(lb) can also be given in terms of the function F: 4' - 'o +
yi(F - Fo)/yr + ayiZ/Yr. This information is to be
used in the equation for p, obtained from Eqs. (lc) and
(id):

(lc)

(1d)

where I = Il + I2 is the total intensity, y = yr + i-yi is
the pump mixing constant, a is the intensity absorp-
tion coefficient, and YT and YR are the transmission
and the reflection coupling constants, respectively,
also complex. Their general form is in exp(iO), where
n's are material parameters and 0's are the phase dif-
ferences between the intensity pattern and the corre-

P/ =1112 (YR + YT)[1 - exp(-2ii)Pp2 ]exp(ii6)

+ I (YT YR)P + aP- (4)

Explicit dependence on 4' is eliminated by defining a
new dependent variable: R = p exp(-i4), whose
phase equals the relative phase of the FWM process.
Consequently, R satisfies the following simplified
equation:

R' = K1 (11I2)1/2(1 - R2) + I(2 ( 2 - I)R + aR,I I (5)
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where K1= YT+YR and K2=-YT--YR+jiyi. Asaresult
of the strong-pump limit, the total intensity approxi-
mately equals I, + I2, and all coefficients in this equa-
tion are known functions. Equation (5) is a Riccati
equation of the type that we encountered in Ref. 5.
We will use a similar type of manipulation to reduce it
to the hypergeometric or a related linear differential
equation. Of course, the situation is more complicat-
ed now, since we deal with multiple gratings. This will
necessitate separate treatments of the absorptionless
case and of the case with absorption.

When the expressions for I, and 12 are substituted
into Eq. (5), it is seen that a more convenient indepen-
dent variable is the function F. The new equation is
of the form

(,Yr tanh F- a)R' = 2 -K2 tanh FR + AR,2 cosh F K a
(6)

and the differentiation is now with respect to F. In
the usual treatment of a Riccati equation, a new de-
pendent variable is introduced: R [2(Y, sinh F - a
cosh F)/KJ](v/v'). Thus a second-order linear differ-
ential equation for v is obtained:

( Tr-a tanh F-a
-"+'yr tanh F- a Y -Ka ot

Yr - a coth F

KI2

4('Yr tanh F - a)2 cosh2 F
v = 0. (7)

This apparently hopelessly complex equation is actu-
ally only one transformation away from the hypergeo-
metric equation. The most convenient form of the
transformation, however, depends on whether a = 0 or
a F# 0.

When a = 0, Eq. (7) becomes

v" + (coth F + - 1 2 cosech2 Fv = 0, (T')

where, for simplicity, the same set of symbols F and v
is used to denote the variables. The appropriate
transformation of the independent variable is then 24
= 1 + coth Fif F > 0 and 20 = 1 - coth F if F < 0, and
the equation becomes

+1
2

~Q -1W, Q Ov - Y = 2 (8)

where c equals 1/2 - K2/2Yr for F > 0 and 1/2 + K2/2Yr
for F < 0. Equation (8) is the hypergeometric equa-
tion, whose properties and fundamental solutions are
well known.6 Note that the choice of the variable t is
such that t > 1, so that only the solutions around the
regular singular points 1 and - are needed. The re-
flectivity is finally given by

Po =

2Y, sinh F0 exp(i4o) Vld 20 ' - V2dV10'

K1 L' V'20 - [2dU'10

where v1 and v2 are the fundamental solutions of Eq.
(8), to be found, for example, in Kummer's list.6

Note that in this formulation the split-boundary-
value problem is simplified, i.e., transferred to the
two-wave mixing problem. That is, Eq. (8) does not
contain unknown coefficients, and so vlo, vWd, etc. are
explicitly known. The only unknown quantity in p is
F0 (4o can be made zero), and the procedure for finding
F0 is outlined in Ref. 4.

For a nonzero, the more convenient form of the
variable change is 24 = I + tanh F. Equation (7) then
becomes

(( - 1)v" - 1 - 24 +

K2 a +Yr, + K2'
2 yr 4Yr

yr + a
2 Yr

K1
2

)v'

v0=, (10)

16y 2(, - Yr + a' 2

2yr,J

which is a special case of the Papperitz (or Riemann)
equation.6 The Papperitz equation is the most gen-
eral second-order linear differential equation with
three regular singularities. The hypergeometric
equation is only a special case of the Papperitz, with
the singularities located at 0, 1, and -. However,
since the regular singular points are movable, our
equation can still be transformed into the hypergeo-
metric equation. This will be accomplished by yet
another transformation of the independent variable:

Tr - a
2 -Yr 2er ~~~~( 11 )
TYr + a
2 Yr

and the final equation for the absorption case is

wi(t -h )V" + [c- (a + b + l)v' - abv = O. (12)

with

2a + Yr - K2

2 (Yr + a)

a+b= a(Yr - K2) - 2 YrK2,
aYb 2 2
wYr -Oa

(13a)

2K1ab =- K-
4(,)2 2_ o2)

(13b)

Reflectivity is then evaluated as in the absorptionless
case. From these expressions a condition for the self-
oscillation follows in a general form:

Vld'V 2 0 - V2dVlO = 0, (14)

provided that the zeros exist. Here, naturally the
form and the meaning of independent and dependent
variables are different for the absorption and the ab-
sorptionless cases.

In Fig. 1 the effect of absorption and pump coupling
on the intensity reflectivity IpoI2 is displayed. While
the effect of absorption is as expected, the pump cou-
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Fig. 1. Intensity reflectivity Ip0I2 as a function of the pump
ratio I2d/Ilo and for different absorptions (given in reciprocal
centimeters). Transmission and reflection couplings are YT
= YR = 10 cm-, and the pump coupling varies from-5 cm-
(solid lines) to +5 cm-' (dashed lines). The thickness of the
crystal is set to d = 0.3 cm.

pling causes a horizontal shift of the reflectivity curves
along the pump ratio axis, a consequence of the energy
transfer between the pumps. The figure also displays
saturation of the reflectivity at Jpo12 = 1, another char-
acteristic feature of equal-strength multigrating phase
conjugation.

A legitimate question to be posed is what happens in
the case when yr = 0. In the experiment the pump,
mixing and especially the probe-conjugate mixing are
not pronounced,7 and in some media (and in most of
the theories) this mixing is not even present. In this
case Eq. (7) becomes

F K2 KItnh42

" + L - tanh F + liv'- K2 sech2 Fv = 0,

(7")
with F being F = F0 - az. This is exactly the equation
considered in detail in Ref. 5, and there is no need to
repeat the analysis here.

In conclusion, we have considered multigrating de-
generate FWM in real-time holographic media.
Closed-form expressions for the phase-conjugate re-
flectivity are obtained for the absorptionless case and
for the case when absorption is taken into account.
An arbitrary phase mismatch between the interfer-
ence fringes and the index gratings is allowed.
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