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saturable couplings: 

Two-wave and four-wave mixing in photorefractive media with saturable gain and saturable absorption is analyzed. Solutions 
to wave equations are found in terms of quadratures and implicitly given functions. Different models of saturation are compared. 
It is found that for weak couplings energy transfer between waves is less effective in the strong unsaturated regime as compared 
to the saturated, while for strong couplings both regimes are equally effective. The existence of multiple solutions in four-wave 
mixing is established. It is shown that the unsaturated system is more stable than the saturated. 

Wave mixing equat ions in photorefract ive  ( P R )  
crystals thus far have been solved only in the satu- 
rat ion regime [1] .  The redis t r ibut ion of  photo- in-  
duced charges is finished in this regime, and the wave 
coupling constant  g and the absorpt ion  coefficient a 
do not depend  on the light intensity.  However,  now- 
adays the experiments with photoreffactives are done 
at low power  levels, and  when the pump deplet ion 
and absorpt ion  are taken into account,  the condi-  
t ions for sa tura t ion  are never met. Indeed,  it is ob- 
served that  at low beam intensi t ies  the wave cou- 
pling and the absorpt ion coefficient become intensity 
dependent  [2 ]. 

Our  goal is to consider  degenerate photorefract ive  
mixing of  waves with saturable coupling constants,  
including intensi ty dependent  absorpt ion  which is 
appropr ia te  to PR crystals. We compare  different  
models  of  saturat ion.  We also investigate the possi- 
bil i t ies of  unstable opera t ion  in the system, in ei ther 
two-wave ( 2 W M )  or  four-wave ( 4 W M )  mixing. 

Wave mixing models  employed  are the s tandard  
two-wave and four-wave mixing arrangements  in PR 
crystals [ 1 ]. In 2 W M  we presume reflection geom- 
etry ( R G ) ,  with the two waves (A~ and A : )  incident  

on the crystal from the opposi te  sides. In 4WM we 
presume mult igrat ing geometry,  and the mixing of  
pumps  is included as the p redominan t  2WM pro- 
cess. It is also presumed that  the diffusion of  photo- 
induced charges is the p redominan t  grat ing-forming 
process, so that  the coupling constants  are real. 

First  we treat  2WM. Our starting point  are the 
steady-state wave equations for slowly varying en- 
velope intensit ies in two-wave PR mixing [3] ,  

I'~ + a ( I ) l l  + 2 g ( I ) I ~ I 2 / I = 0 ,  ( l a )  

I'2 - a (1)12 + 2g(I ) I ,  12/1= O, ( l b )  

where I = I  1 +12 is the total intensity, and a ( I )  and 
g(I )  are the intensity dependent  absorption and wave 
coupling coefficients. The pr ime denotes the deriv- 
atives along the propagat ion (z)  direction.  

There are many theories of  PR effect which in- 
clude intensity dependent  coefficients [2-6  ]. We opt  
for a recent theory of  Mahgerefteh, Feinberg,  and 
Tayebat i  [4] ,  which takes into account both deep 
donors  and shallow traps in the crystal. According to 
this theory the intensi ty dependent  gain coefficient 
is given by 
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(2) 

where gs is the value of  the saturated gain, k 2 = 
k 2 + k  2 is the square of  the total Debye screening 
wave vector, and k~ and k 2 are its portions coming 
from the donors and the traps. Further, B is the ther- 
mal excitation rate, and s is the excitation cross sec- 
tion for the traps. Thus, when donor  contribution to 
the Debye screening is predominant,  there is no in- 
tensity dependence. However, when the trap contri- 
bution is predominant,  or when the two contribute 
about equally, the following functional dependence 
is obtained, 

g(1) =gsI/(I+ C) ,  (3) 

(4) 

o r  

gs( ) g(I) = ~ 1 + , 

where C is a material-dependent parameter. We use 
both forms as models for the intensity dependent gain 
coefficient in 2WM. 

Many different models exist for the saturate ab- 
sorption coefficient [2,3,5] as well. Again, we con- 
sider two models, the PR absorption, found by Brost, 
Motes and Rotge [ 2 ] to account for the observed be- 
havior in PR crystals, 

c~(I) = a o  +~I /  ( C+ I) , (5) 

and the two-level saturable absorption 

~ ( I ) = ~ o /  ( C+ I) , (6) 

where ao is the linear absorption, and c~ a material 
parameter. 

The solution o f  eqs. ( 1 ) with the PR gain (3) and 
the PR absorption (5),  and with C~o=0, is given in 
terms of  two functions F ( z )  and f ( F )  [ 7 ] 

I ,=½fexp(F) ,  I2=l  f e x p ( - - F ) ,  (7) 

which are found by evaluating a system of two 
quadratures: 

F 

f --lnfo ~ -  tanh x 
FO 
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ckr - l n  f =gsz 
C I f i x )  (sinh~v-r cosh x) ' 

F0 

(8) 

where q=  ~/gs. Equations (8) allow multiple solu- 
tions when boundary conditions are applied. It 
should be noted that we deal here with a two-point 
boundary value problem. The conditions are that the 
intensities are given on the opposite faces of  the crys- 
tal, which extends from z = 0  to z=d. The appear- 
ance of  multiple solutions complicates the analysis, 
especially when there is no criterion which would 
distinguish between the physically relevant and ir- 
relevant solutions. Here two solutions are found, but 
one leads to negative z, and thereby is discarded. 
However, in 4WM there is no such criterion and 
multiple solutions appear, leading to a chaotic re- 
sponse of  the system. 

The corresponding quadratures for the model with 
the two-level saturable absorption are given by 

In = - - ,  V - v o + C  - o~z, (9 
~1 u (x )  

~'o 

where u ( v ) =  [ f 2 ( u ) ' ~ Z ) 2 ]  1/2 is the sum of intensi- 
ties and v is their difference. The intensities are now 

11=(u+v)/2 ,  1 2 = ( u - v ) ~ 2 ,  (10) 

and no multiple solutions are found this time. 
Figure 1 offers a comparison between different 

models. Also included are the results of  Ja [3 ], who 
considered the effects of  linear absorption. We use 
the method of  Ja (i.e. a shooting procedure) as a 
checkup on our method. The agreement is pro- 
nounced. Our results indicate that the energy trans- 
fer between waves is less effective in the unsaturated 
regime. 

The model with PR gain from eq. (4) can not be 
solved analytically with the absorption included in 
any form. The same goes for 4WM. Therefore, in 
what follows absorption is neglected. The variable v 
is constant then. This is a standard result for 2WM 
in RG. The solution of  eqs. ( 1 ) with c~(I) = 0  and 
g(I) from eq. (4) is given by 

I i=½Vo(cothF+l) ,  I2=½Vo(COthF-1), (11) 

where the function F(z)  is found from an implicit 
relation: 
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Fig. 1. The comparison of different models. The coupling coeffi- 
cient g is represented as a function ofz. Circles correspond to Ja's 
results [3 ]. Absorption mechanisms are different for different 
pairs of  curves. The upper curves are with C1 = 10, Cz = 0.1, and 
the lower with C~ = 1, C2 = 0.01, Cl and C2 being given boundary 
conditions for intensities. Full curves correspond to the PR ab- 
sorption with a = 2 c m - l ,  dashed to the two-level absorption with 
a o = 2  cm -~, and dotted to the case without absorption. C =  1 
throughout. 

b 
gsz(F) = 1 ~  ( F - F o )  

I sinh F cosh F + b  s inhF  ° 
+ In ~ Foo cosh Fo + b sinh 

1 In s c h ( F + t a n h - l b )  
+ 5-1 rb-b) ' (12) 

where b=  C/2vo, Vo being the constant value of v (to 
be determined from boundary conditions). Here 
"sch" stands for the sinh function when [b I> 1, or 
for the cosh function when { b l < 1. The application 
of boundary conditions raises the possibility of mul- 
tiple solutions (double), but again only one is found 
physically reasonable. 

Figure 2 depicts the influence of different satu- 
ration mechanisms. Unsaturated models from eqs. 
(3) and (4) are compared with the saturated case 
g(I)  =g~. In general, the saturated case is more ef- 
fective in extracting energy from one beam to the 
other. However, for strong enough coupling this dif- 
ference is lost. All saturation mechanisms then 
achieve an efficient depletion of the pump and pro- 
duce the same energy transfer. 

1.5 

1./+ 

r • r T • 

1.2 12 ~ OB 

,~.. o . . . .  z .... ~ O.B \.. 02 ~ -  ......... 
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Fig. 2. Presenting the effect of  different saturation mechanisms, 
for g, = 10 c m -  1. Intensities of  the two beams are displayed as a 
function of z. Full lines depict the unsaturated model, eq. (3),  
while dotted correspond to the model from eq. (4), both with 
C =  1. Dashed lines are for the saturated case with C=0 .  The in- 
set shows the situation for gs=2  cm -a. While in general satura- 
tion enables more efficient energy transfer between the waves, 
for strong couplings this difference is lost. 

The 4WM model employed presumes that the for- 
mation of gratings proceeds by more than one grat- 
ing mechanism. The intensity equations describing 
4WM in PR media, with the assumption that the 
transmission and reflection gratings contribute 
equally (i.e. have the same g coefficient), are given 
by [6,7] 

//'~ = 2y(1)It 12 - 2g(I)Ii  (14 - 13) , (13a) 

11'2 =27(I)ItI2 +2g(I)I2(I4 - 1 3 ) ,  (13b) 

H'3=2g(I)I3(It  +I2)+4g(I)(ItI21314) 1/2 , (13c) 

II'4=2g(I)I4(Ii +I2)+4g(I)(ItI21314) t/2 , (13d) 

where, similar to the previous case, the y term de- 
scribes 2WM between the pumps, and the g term 
takes into account the equal strength 4WM. Here I 
is again the total intensity, so that 

I I 
g ( I ) = g s c + i ,  y ( I ) = Y s C + i .  (14) 

Absorption is excluded from our 4WM analysis. The 
presumed geometry is that two counterpropagating 
pump beams It and 12 impinge on the crystal, and 
the signal 14, coming from the side of the pump It 
(and using the energy of pumps) generates its own 
counterpropagating phase conjugate (PC) replica 13. 
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The condition for exact phase conjugation has been 
applied, so that the relative phase ~ = ~4 + 03-  ~2 - -  ~1 

is set to zero. 
The solution of eqs. (13) is similarly written in 

terms of two functions v and w [ 7 ], 

-(v+6) u(v)+ (v+6) 
I I=I4dU(V) 2 , I2=I4d 2 

13 =i4d v cosh w ( v )  - -  1 

2 

(15a) 

L =I4dV c°sh W(V)+I 
2 ' 

(15b) 

which are also given as quadratures: 

v 

w(v) = ~ f ( x )  dx 
0 x u ( x )  ' 

1 

l n u ( z ) + c  x ~ +  x u ( x )  
1 1 

(166) 

d x = 2 g s ( z - d )  , 

(16b) 

where 

C = C/I4d , f(U) = ab d/2, 

U(V)= [ ( v + 6 ) z + f  2] 1/2, and ~='A/gs.  

In this manner the original two-point boundary 
value problem is written as an initial value problem. 
The value of both variables are known on the z = d  
face of the crystal, Vd= 1, Wd= O. However, the input 
parameters a and & which figure in eqs. (16), de- 
pend on the missing boundary values. Their evalu- 
ation is provided by a self-consistent iterative map 
procedure. Sometimes during this procedure un- 
stable situations arise, leading to a chaotic output. 
The procedure is described in our recent publication 
[7 ]. Here we provide an outline. 

The values of a and 6 could be given in terms of 
the missing values Ild and 14d on the z = d  face of the 
crystal, or in terms of 12o and 13o (equivalently, Vo 
and Wo), missing on the z---0 face. The problem of 
fitting boundary conditions is resolved by the fol- 
lowing procedure. We start by choosing arbitrary ini- 
tial values ao and 60; from these I16 and I4d are cal- 
culated. 12o and 13o (i.e. Vo and %) are found by 
evaluating integrals in eqs. (16), or by solving eqs. 
(13) on computer. This enables the calculation of 
the new values for a~ and 61, and the procedure is 

repeated till convergence. In this manner a map is 
defined in the parameter plane, and the procedure 
corresponds to the evaluation of the fixed points of 
the map. An interesting question is whether the map 
can become unstable, and what happens when it be- 
comes unstable. 

The procedure is stable for g negative, and for ar- 
bitrary other parameters. For g positive the insta- 
bilities set in, and we investigate these instabilities 
by standard methods of nonlinear dynamics. This is 
done by evaluating the fixed points of the arbitrary 
composition power of the map. Such fixed points 
correspond to different periodic cycles that may ex- 
ist in the map, and may reveal the nature of the tran- 
sition to chaos, if there is one in the system. How- 
ever, seeing such instabilities in a mode map does 
not mean that they exist in a real crystal. Instabilities 
following from a steady-state analysis and not from 
a time-dependent (dynamical) treatment of the pro- 
cess could be spurious. An illuminating discussion of 
this point can be found among yon Neumann's col- 
lected works [ 8 ]. The existence of such instabilities 
should be verified experimentally. 

Figures 3 and 4 display unstable situations that may 
arises in the system. Figure 3 presents bifurcation 
diagrams of the reflectivity when the 4WM coupling 
g is varied, for saturated and unsaturated crystals. In 
the saturated case complicated behavior is observed, 
including transitions to chaos via direct and inverse 
period doubling. The corresponding unsaturated case 
is simpler, displaying only quasiperiodic behavior 
and one period doubling transition to chaos, at the 
unphysical border. Unphysical means that for higher 
values o fg  the wave-mixing model is inappropriate: 
the PC wave intensity becomes negative. 

Also, the process of 4WM is more stable in the un- 
saturated regime, i.e. stronger couplings are needed 
in order to destabilize an unsaturated system. This 
conclusion is further corroborated in fig. 4, which 
depicts the bifurcation diagram obtained by sam- 
pling the constant C as the control parameter. Evi- 
dently, the system becomes more stable as the con- 
stant C is increased, which is equivalent to having 
less and less saturated crystal. 

In summary, we have investigated 2WM and 4WM 
processes in photorefractive crystals in the unsatu- 
rated regime, i.e. when the coupling "constant" and 
absorption depend on the light intensity. A few 
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Fig. 3. (a) Bifurcation diagram of the intensity reflectivity as gs 
is varied, for the saturated regime (C=0).  To the left quasiper- 
iodic behavior is observed. To the right quasiperiodic behavior 
has changed into (direct and inverse) period doubling. (b) The 
corresponding diagram for the saturable regime (C= 1 ) reveals 
only quasiperiodic behaviour, with a terminal period doubling. 
Note that for the values ofgs where the saturated crystal displays 
complicated behavior, the unsaturated is simple. 

mode l s  o f  sa turable  abso rp t ion  in 2 W M  and  4 W M  

are in t roduced ,  and  the  co r r e spond ing  wave  equa-  

t ions  are  so lved  exactly.  The  so lu t ions  are wr i t ten  in 

t e rms  o f  quadra tu res .  F r o m  the  solu t ions  it is evi-  

dent  that  the  energy t ransfer  be tween  the  waves  is 

less e f fec t ive  in the unsa tu r a t ed  stage o f  the  process.  

1.0 

~o.s 

0 0.5 c 1.0 

Fig. 4. The bifurcation diagram as the saturation parameter C is 
varied. The system is chaotic for C=0 (saturation), and then 
proceeds through a series of changes until a unique solution is 
obtained for C= 1 (unsaturated system). 

In 4 W M  stable and  unstable  (mu l t i p l e )  solut ions  

are found,  d e p e n d i n g  on the s t rength o f  the coupl ing.  

Di f fe ren t  types o f  uns table  b e h a v i o r  are observed:  

quas ipe r iod ic  m o t i o n  on a torus,  and  pe r iod  dou-  

bl ing to chaos.  Chao t i c  b e h a v i o r  in this con tex t  

means  that  the in tens i ty  ref lec t iv i ty  does  not  settle 

on to  any par t icu la r  value,  but  wanders  on a s trange 

a t t rac tor  in the pa ramete r  space. We should note  that  

an ins tabi l i ty  in this con tex t  does  not  m e a n  a tem-  

poral  instabil i ty.  It means  that  the  i te ra t ive  solut ion 

p rocedure  as a m a p  in the p lane  has b e c o m e  un- 

stable, a l lowing mul t ip l e  ( and  s o m e t i m e s  inf in i te ly  

m a n y )  ref lec t iv i ty  values.  Each o f  these values  rep- 

resents  an a l lowed so lu t ion  to the b o u n d a r y  va lue  

p r o b l e m  at hand,  however ,  not  all o f  t hem could  be 

dynamica l ly  accessible to the system. It is also found  

that  ( in this sense o f  ins tabi l i ty)  the  unsa tu ra ted  sys- 

t e m  is m o r e  stable than  the saturated.  
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