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An exact solution to the stationary holographic degenerate four-wave mixing in both transmission and reflection geometry 

for photorefractive media is obtained. The effects of pump depletion and light absorption in the non-linear dynamic medium 

are rtgorously taken into account. The case of the transmission geometry is treated in more detail. with an emphasis on the 

energy transfer. The numerical steps in the procedure are reduced to the solution of one simple first-order differential equation, 

or are absent altogether for the case of no absorption. 

Due to great applicability in various branches of 
nonlinear optics, a substantial amount of work, both 
experimental [l-S] and theoretical [4-81 went into 
degenerate four-wave mixing (DFWM) in recent years. 
On the theoretical side, progress made in selection of 
the effective wave-coupling media placed a more ur- 
gent need for solutions of wave-mixing theories in 
which pump depletion and light absorption in the dy- 
namic medium are allowed for. While absorption can 
be neglected in some weakly absorbing crystals, for 
example in lithium niobite, in other popular crystals 
such as BSO it can be as high as 10 cm-I, and there- 
fore must be included into any realistic theory. In 
this report we present a method for solution of the 
coupled wave equations describing energy transfer in 
the stationary holographic DFWM in both transmis- 
sion and reflection geometry, with allowance for de- 
pletion and absorption in the medium. The emphasis 
is placed on the case of transmission geometry, and 
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the results on reflection geometry are only men- 
tioned for completeness. A more complete analysis 
of the reflection geometry has been published else- 
where [9]. 

We consider here the standard beam configuration 
for DFWM. Two pump beams AI and AZ impinge 
from the opposite sides on a photorefractive crystal 
situated in between the planes z = 0 and z = d. For a 
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wave equations in a slowly varying amplitude approxi- 
mation is of the form [7] : 

dl,/dz = -cd, + g[1113 f (111,131,)1~2] !I(), 

u,ldz = d2 + g[I214 + (ZIZ~Z~Z~)~‘~I /Zo, 

dJ3lh = -d3 - g[IlZ3 + (11121314)1’21 ilo, 

a,/& = d,g -g[l,Z2+(ZlZ2Z3Z,)1’21 /lo, 

(la) 

(lb) 

(lc) 

(14 

where I,, I,, I,, Z, represent the beam intensities, 
I,, = I, + 12 + Z3 t Z, is the total intensity, 01 is the lin- 
ear absorption coefficient, and g the effective coupling 
constant. For the case of the reflection geometry we 
similarly have [8] : 

dZ,/dz = -&I - 2g[ZlZ4 + (Z1Z2Z3Z4)lZ2] /Zu, (2a) 

dZ,ldz = LYI, - 2g[Z213 + (Z,Z,Z,Z,)“2] /zu, (2b) 

g3lh = -&3 ~ %[I312 + (~l~2J3~4)l’2] /IO, (2cI 

dl,/dz = @Id - & [ZdZl + (ZlZ2Z3Z4) 1/2] /Zu . (24 

For simplicity the same set of symbols 01, g (assumed 
to be real) is used to denote material parameters in 
both cases. Without loss of generality, we consider the 
case g > 0. A similar analysis carries through for the 
caseg < 0. Note that we are concerned with the sta- 
tionary energy transfer and the generation of the 
phase-conjugated wave, so that only the fundamental 
components of the phase grating are taken into ac- 
count. Also, a rr/2 shift between the interference 
fringes and the index grating is introduced, so that 
the theory in this form applies to the experimentally 
interesting case of photorefractive media. The bound- 
ary conditions are applied at two end-points, that is 
Z1(0) = 1, Z2(d) = C2, Z3(0) = C3, and Z4(6> = 0 is as- 
sumed to be known. 

The physics of DFWM and real-time holography 
has been considered at length elsewhere [ 1,4,5,7] and 
will not be of major concern here. The main result of 
this report is a procedure for exact solution of the 
system of equations (1) and (2) with or without ab- 
sorption. Again, the case of the transmission geometry 
will be treated in more details, and the results on the 
reflection geometry will be only cited for complete- 
ness. Along the way a comparison will be made with 
the results of Cronin-Golomb et al. [7] who treated 
(by a different method) transmission and reflection 
geometry without absorption, and with Ja [8], who 
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treated the complete reflection geometry numerically. 
Analysis of eqs. (1) proceeds as follows. Firstly 

new dependent variables are introduced: u 1 = I, t Z, , 

U2=12+14,U1=Z1-13,U2=12 -Zq.Intermsof 
these variables and two auxiliary functionsff = 
U: - ut,fi = U$ - ug, eqs. (1) transform into: 

U; = +4l, u; = 13u2, @a) 

u; = -flu1 + &(fl +f2)/(u1+ Q, (3b) 

u; = Pu2 + &U-i +f2)@1 + Q, (3c) 

where the prime denotes the derivative with respect 
to gz, and 0 = o/g. Therefore u 1 = (1 t C,) exp(-oz), 
u2= C2 exp ar(z - d), and u1u2 t flf2 = const = 
(Zld - Z3&2, SO that only one of the equations 
(either (3b) or (3~)) remains to be solved. Assuming 
asolutionoftheformfl=ulsinx,ul=ulcosx, 
f2 = u2 siny, u2 = u2 cosy, it follows: x =y t cos-l(~/ 

b), where U = ul&d = (Zld -Z,,& and b = U@&j = 
(1 + C3)C2 exp(-cud). Also eq. (3b) or (3~) becomes: 

-2~’ = [(uf + a)/(~; + b)] sin y 

+ [C/U; + b)] cosy, (4) 

with c2 = b2 - a2. The intensities of the four waves 
are given by: 

I, = u1 cos2 [O, + Y)/2] , I,= u2 cos+/2), (5a 

Z3 = t( 1 sin2[b + Y)/2] , I4 = u2 sin2b/2), (5b) 

where Y = cosel(a/b). Eq. (4), and its Riccati equiv- 
alent (brought about by a variable change w = tan y), 
as well as its linear second-order counterpart, seem to 
be amenable to analytic evaluation only in the case 
01= 0. The solution is then of the form: 

tmCv,2) = {expENd - z)l - 11 @e/2> 
1 t exp[p(d - z)] tan2(t9/2) ’ 

(6) 

Here tan 0 = c/(Ci + a), and /_J =g[( 1 t C3)2 + 2a + 
Ci] 112/2( 1 t C2 + C,). In the general case ar # 0 solu- 
tion has to be performed numerically, starting say at 
z = d (with an initial value yd = 0) and going back- 
wards to z = 0. 

To complete the solution, it remains only to deter- 
mine uld or a (which figure explicitly in the expres- 
sions for intensity through y and Y) in terms of the 
given boundary values. For OL = 0 this is accomplished 
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by solving an implicit algebraic equation for a: 

c@-bta = bwh4 - 11 We/2) 
c + a(b - a) 1 t exp(@tan2j0/2) ’ 

(7) 

For QI # 0 the value of the parameter uld is found as 
the root of the equation: 

Y&d) ’ W-l 
Uld exp(cud) 

1 tc, 

= 2 tan-l(G), (8) 

where the functionyO(uld) is known from the numeri- 
cal integration. 

We note agreement between our results and that of 
Cronin-Golomb et al. [7] for the case (Y = 0 once the 
following identification is made: their 2 Ic I 2 equal 
b t a, A t 4 ICI 2 equal u: t 2u t u$, etc. In our nota- 
tion the intensity reflectivity isR = (C2/C3)sin~O/2). 

By way of an example, let us demonstrate how the 
procedure works for a specific set of parameters and 
boundary values. To the rather simple numerical prob- 
lem at hand we apply elementary methods: an initial- 

value integration of eq. (4), and a graphical solution of 
nonlinear algebraic equations (7) and (8). All the nu- 
merical steps in this report are performed on a TI 59 
handheld calculator. We pick C2 = 1, C3 = 0.7 (in 
units ofI1(0)),g = 5 cm-l, d = 0.2 cm, and consider 
three values for the absorption constant (Y: 0,3 cm-l, 
and 8 cm-l. In fig. 1 the graphical solution of eqs. (7) 
and (8) (i.e. the evaluation of a) is depicted. The solu- 
tion is estimated graphically, and then iterated for 
greater accuracy. LJsing the found values for a, in fig. 2 
the corresponding functionsy(z) are plotted. 

We note that y is rather small for realistic values of 
the parameters, so that eq. (4) can be linearized with 
little error. The solution of the linearized eq. (4) is 
easily found: 

Y = & exp [G(z)1 j --- ev [WC)1 dt, 
2 

where: 

G(z) = (ga/2b)(z - 4 

- (g/M)(b - a)ln (s) . (9b) 

a=o.155 a= 0.439 

a= 6cm-1 a=3cm-’ 
10 LHS \ 

a =a616 
I 

0.0 0.5 a 0 

Fig. 1. Graphical solution of the algebraic equations (7) and 
(8) for the following set of parameters: C, = 1, C3 = 0.7, 
g = 5 cm-‘, d = 0.2 cm. RHS and LHS stand for the right- 
hand side and the left-hand side of the aforementioned equa- 
tions. The solutions appear to be unique for realistic values 
of the parameters. Note that v1 d = a for the chosen set of 
boundary values. 

Fig. 2. Functiony(z) needed in specification of the intensi- 
ties, for three different values of the absorption coefficient. 
The points indicated atop the curves for CI # 0 correspond to 
the exact solution of the linearized eq. (4). 
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A set of points calculated using the linearized solution 
is also plotted in fig. 2. Naturally, the above qualitative 
estimates worsen as the value of g (or rather gd) in- 
creases. But, by the same token, for any (Y f 0, asg in- 
creases, the correspondingy(z) is getting closer to the 
solution for (Y = 0. In this manner the whole procedure 
can be made analytic, and reduced to the manipula- 
tion of algebraic equations. 

In fig. 3 the corresponding intensities are presented. 
It is seen that the effect of absorption is always dele- 
terious -- it attenuates the beams regardless of the 

geometry. By an inspection of fig. 2 it is also seen 
that the cosine and the sine terms in the intensities 
(especially in I, and 13) vary little with the absorp- 
tion, so that the major change in the intensities comes 
from the factor exp(+m) situated in u2 and u 1 re- 
spectively. This validates, for example the conjecture 
of Yeh [lo], who noticed that his theory of two- 
wave mixing in photorefractive media can be corrected 
for absorption to a good degree by the use of the fac- 
tor exp(+oz). The absorption also lowers the reflectiv- 
ity roughly by a factor exp(-@, the expression for 
the reflection coefficient being now: 

R = (C,/C,)exp(-old)sin2@u/2). (10) 

Fig. 3. Intensities of the four beams inside the crystal for 
three values of the absorption: no absorption (the fulI lines), 
3 cm-’ (dashed lines), and 8 cm-’ (dotted lines). The atten- 
uated (dashed and dotted) lines for the phase-conjugated 
beam 14 are not shown. 

We note that y,, is an increasing function of the thick- 
ness of the medium d, starting from y0 = 0 at d = 0. 
Since the oscillatory sine-term in this expression is 
multiplied by an exp(-ord) factor, there appears to 
exist for each QI f 0 an optimal thickness of the holo- 
gram that maximizes the value of the reflectivity. 

The presented procedure for treatment of the ener- 
gy transfer in the holographic DFWM can be applied 

to the problem of the phase transfer as well, with less 
analytical results along the way, and more of the nec- 
essary numerics. Nonetheless, the important case of 
the small phase transfer can still be treated exactly, 
with the relative phase $J = & t $J~ - @1 ~ G2 given by: 

d 

z 

+ 64 &Jcosti + Y)tm rl . (10 

Analysis of the reflection geometry proceeds along 
similar lines. The general solution, as it appears in ref. 
[9] is of the form: 

1, = 4 exp(lL - u)cos2 [(P + 4)/21, (1% 

I2 = f exp($ + u)cos2 [t$ - 4)/2], (12b) 

I3 = 5 exp($ - u)sin2 [(p + 4)/2], (12c) 

1, = fr exp($ + u)sin2[@ - 4)/2] (124 

where four z-dependent functions $, p, U, 4 are deter- 
mined in the following way. The first two of the four 

are connected with the integration constants by 
exp(J/)cos p = E = 2dm and exp($)sin p = F = 

Fd exp g(d - z); u is the solution of a simple first-or- 
der differential equation: 

u’ = sin2p tanh u t 0, (13) 

and 4 is a simple functional of U: 

4 = qd - (E/flu + @/F&d 

- (@/Fd)exP(-gd) s” u exp(&)d<, 
z 

(14) 

where u = u - oz. Thus the solution of eqs. (2) is re- 
duced to the integration of a simple differential equa- 
tion, eq. (13); a quadrature, eq. (14); and a knowledge 
of the two constants of integration, E and F,. The 
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0 0.10 2 (uri) 

Fig. 4. Comparison of the exact solution for reflection grating 
with the numerical results of ref. [ 81, The curves are taken 
from fg. 2 in ref. [S] (the full lines correspond to 01= 0, the 
dashed to (Y = 3 cm-‘), and the points indicated are obtained 
from the exact solution, eqs. (12). The apparently much 
higher level of phase conjugation here as compared to the 
transmission grating in fig. 3 is caused by the much stronger 
beam coupling constant (note g in eqs. (1). and 2g in eqs. (2)). 

constants of integration, together with the initial 

VaheS ud and qd needed for specification of the inten- 

sities are found by applying boundary conditions to 

the solution given by eqs. (12). In fig. 4 the compari- 

son with the numerical results of ref. [8] is depicted, 

for the values of the parameters: C2 = 1, C, = 0.6, 
g = 6 cm-l, d = 0.2 cm, and for the two values of 1~: 

0 and 3 cm-l. As expected, no noticeable difference 

is evident. 

In conclusion, we propose a procedure for exact 
solution of the stationary holographic DFWM in pho- 

torefractive crystals, in both transmission and reflec- 
tion geometry when the absorption in the dynamic 

medium is taken into account, and depletion of the 

pumps allowed for. 
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