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Abstract

An analysis of light-induced space-charge field, valid for the propagation of two-dimensional solitons in photore-

fractive (PR) crystals, is carried out. Under conditions appropriate to the formation of self-trapped beams, the equation

for the electrostatic potential is simplified and solved, to obtain an analytical expression for the space-charge field, and

thus the refractive index change. The expression exhibits an excellent agreement with the numerical calculation for a

variety of localized two-dimensional light beams, in particular for the bright fundamental and higher-order vortex

spatial screening solitary waves. Based on analytical results, a class of models for the local isotropic two-dimensional

space-charge field is proposed. They are compared to the general nonlocal anisotropic model, using the propagation

and breakup of vortex beams as an example.

� 2003 Elsevier B.V. All rights reserved.

PACS: 42.65.Tg; 42.65.Hw
1. Introduction

Self-trapped optical beams in photorefractive (PR) materials have been the subject of intense research
effort in the past decade [1]. They arise when diffraction is compensated by nonlinearity in PR media,

leading to the formation of optical solitons. The PR effect results from the excitation, transport, and

trapping of free carriers, which give rise to the build-up of space-charge field, that in turn modulates the

refractive index by means of the linear electro-optic (i.e., Pockels) effect. The PR effect allows for the self-

trapping in one and two transverse dimensions at very low optical power levels (microwatts). Both one-

dimensional (1D) and two-dimensional (2D) spatial solitary waves have a unique shape which is determined
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by the strength of the external electric field, the light intensity, and the beam diameter. However, the sit-

uation with the 2D case is considerably more complicated [2–4].

The complication is that, although self-focusing of the beam takes place in two transverse directions, the

external field necessary for the screening effect is applied along only one transverse direction. As a rule, this

is the direction in which the electro-optic effect is maximal, according to the anisotropic character of the

dielectric tensor. This anisotropy does not allow for circularly symmetric solitary waves. The overall
structure of the refractive index makes the beams squeezed in the direction of the applied field. The higher

dimensionality introduces a new feature, a nonlocal contribution to the light-induced refractive index, in

contrast to the one dimensional situation, where the refractive index is local (i.e., it follows the local spatial

dependence of the light intensity).

Our aim is to obtain a general analytical expression for the light-induced space-charge field and the

change in the refractive index of the crystal that agrees well with the numerical calculation. Based on that

expression we propose a novel form for the local isotropic part of the space-charge field that is better suited

for the propagation of 2D self-trapped beams. We compare different isotropic models with each other and
with the general anisotropic model, using the break-up of vortex solitons as an example.

Section 2 of the paper introduces a model for material equations, Section 3 contains an analysis of the

equations, Section 4 presents results, Section 5 offers a discussion, Section 6 considers the propagation of

beams, and Section 7 gives conclusions.
2. Model

The starting point is the standard one-trap model for electrons as the sole charge transport mechanism

[5]. For our purposes, the material equations (Kukhtarev�s equations) that describe the PR effect will be

written in a slightly different form [2], by introducing an electrostatic potential / that corresponds to the

space-charge field Esc ¼ �r/:
otNþ
D ¼ Sð1þ IÞðND � Nþ

D Þ � crneN
þ
D ; ð1aÞ
��0�rr2/ ¼ q; ð1bÞ
otqþr � j ¼ 0: ð1cÞ

Here Nþ

D stands for the density of ionized donors, I is the light intensity of the propagating beam (in units of

the saturation intensity), ne is the free-electron density, S and cr are the photoexcitation and recombination

constants, ND and NA are the concentrations of donors and acceptors, q ¼ qðNþ
D � NA � neÞ is the charge

density, j ¼ �lqner/þ lkBTrne is the current density, l is the electron mobility, q is the carrier charge, T
is the absolute temperature, kB is Boltzmann�s constant, �r and �0 are the scalar dielectric constants of the

material and vacuum, respectively. Thus, the model essentially consists of the equation for the generation/

recombination of mobile charges, the Poisson equation for the charge density, and the continuity equation
for the current density. We proceed to analyze them.
3. Analysis

The quantity of essential interest is the potential /. A closed-form time-dependent equation for / is

obtained by substituting Eq. (1b) into Eq. (1c)
otðr2/Þ ¼ l
�0�r

qner2/
�

þ qrne � r/þ kBTr2ne
�
: ð2Þ
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To induce the formation of screened sparial solitons it is necessary to apply an external electric field E0

across the crystal. In a standard geometry the field is applied along the x-axis, orthogonally to the beam

propagation direction, which is taken to be the z-axis. This makes the potential satisfy the following

boundary condition:
/
l
2

� �
� /

�
� l
2

�
¼ E0l; ð3Þ
where l is the distance measured along the x-axis between the two crystal faces to which the external bias

voltage is applied. Further analysis requires an expression for ne in terms of the known quantities.

It is assumed that the recombination/generation process reaches equilibrium much faster than other

processes in the crystal, which means otNþ
D ¼ 0. Inserting the expression for Nþ

D ¼ q=qþ NA þ ne into the

steady-state Eq. (1a), one obtains a quadratic equation for ne:
ne ¼ nI
ND � NA � q=q� ne

NA þ q=qþ ne
; ð4Þ
where nI ¼ Sð1þ IÞ=cr is the fraction of electron density proportional to the light intensity. This equation is

solved either directly or iteratively, by inserting the zeroth-order approximation nð0Þe ¼ nIðND � NAÞ=NA into

the right-hand side, and continuing the process. However, by arguing that ðq=qþ neÞ=NA is already small

[6], the zeroth-order approximation is found quite satisfactory. Hence one can write
ne �
SðND � NAÞ

crNA

1ð þ IÞ; ð5Þ
which is much explored in the modeling.
Inserting Eq. (5) into (2), and after some rearranging, an intensity-dependent potential equation is

obtained
sotðr2uÞ ¼ r2uþr lnð1þ IÞ � ru� E0ox lnð1þ IÞ � kBT
q

r2 lnð1
n

þ IÞ þ r lnð1½ þ IÞ�2
o
; ð6Þ
where
s ¼ �0�rcrNA

lqSð1þ IÞðND � NAÞ
; ð7Þ
is the intensity-dependent relaxation time of the crystal, and we have redefined the potential / � uþ E0x,
so that the boundary conditions are now u ! 0 for x,y large. The last two terms in Eq. (6) represent the

drift of charge carriers under the space-charge field and the diffusion field of the crystal. The charge-carrier

diffusion term is responsible for the bending of light beams as they propagate through the crystal.

In what follows we shall restrict ourselves to the steady-state situation otðr2uÞ ¼ 0, and thus consider

the electrostatic potential equation
r2uþr lnð1þ IÞ � ru ¼ E0ox lnð1þ IÞ þ kBT
q

r2 lnð1
n

þ IÞ þ r lnð1½ þ IÞ�2
o
: ð8Þ
It should be noted that the most troublesome for the treatment of Eq. (8) is the second term on the left hand

side. Without it the equation reduces to Poisson�s equation. In [3] the solution to Eq. (8) is obtained by

neglecting the second term. We follow a different route.
4. Results

It is interesting to note that Eq. (8) can be solved exactly in the transverse 1D case (x coordinate only),

giving rise to a space-charge field of the form
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EscðxÞ ¼ E0

1þ I1
1þ I

� kBT
q

d lnð1þ IÞ
dx

; ð9Þ
where I1 is the value of intensity at the infinity. Since the light-induced refractive index change is given in

terms of the space-charge field as Dn ¼ n30reffEsc=2, where n0 is the unperturbed refractive index of the

material and reff is the effective electro-optic coefficient along the applied field direction, we can see from Eq.

(9) that, apart from the diffusion contribution, the refractive index change displays the well known ð1þ IÞ�1

dependence and, also, a local behavior, i.e., it depends on the local values of intensity.

In the 2D case, Eq. (8) cannot be solved in closed form. Nevertheless, under some appropriate as-

sumptions, it is still possible to obtain a general analytical expression for the space-charge field that exhibits

a remarkable agreement with the numerical calculations. First, we simplify Eq. (8) by making the following

transformation of the potential
uðx; yÞ ¼ E0

uðx; yÞffiffiffiffiffiffiffiffiffiffiffi
1þ I

p þ kBT
q

lnð1þ IÞ; ð10Þ
where the new modified potential uðx; yÞ satisfies the canonical elliptic equation
r2u� r2 ln
ffiffiffiffiffiffiffiffiffiffiffi
1þ I

p�
þ r ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ I

p� �2
	
u ¼ 2ox

ffiffiffiffiffiffiffiffiffiffiffi
1þ I

p
: ð11Þ
The usefulness of the above transformation is based on the fact that for the well localized beams in 2D,

that is when the intensity I decays fast in both x and y directions, it is a better approximation to neglect

the second term on the left hand side of Eq. (11) than to neglect the second term on the left hand side of

Eq. (8). In this manner one obtains an excellent approximation to the full numerical solution, as it will
be seen below, that can be treated analytically. Hence, we restrict ourselves to solving the Poisson

equation
r2u ¼ 2ox
ffiffiffiffiffiffiffiffiffiffiffi
1þ I

p
; ð12Þ
in terms of the 2D Green�s function
uðx; yÞ ¼ 1

p

Z 1

�1

Z 1

�1

o

on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Iðn; gÞ

p� 	
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� nÞ2 þ ðy � gÞ2

q
dn dg: ð13Þ
Let us introduce polar coordinates, according to the expressions:
q cos h ¼ n� x; ð14aÞ
q sin h ¼ g� y ð14bÞ

(q here not to be confused with the charge density). Then, Eq. (13) can be integrated by parts, to yield
uðx; yÞ ¼ � 1

p

Z 1

0

Z 2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Iðxþ q cos h; y þ q sin hÞ

p
cos h dq dh: ð15Þ
We are now in position to check the correctness of the approximation, by comparing the analytical result,

Eq. (15) with the numerical solution of Eq. (11). This is accomplished in Fig. 1, using light intensity dis-

tribution of a 2D vortex beam. It is seen that the agreement between the approximate solution and the
numerical is strikingly good, especially if one takes into account that the cuts in Fig. 1 are actually made at

the places where the agreement is the worst.

Notice that when x and/or y ! 1, in the case of localized beams the intensity becomes independent of h
and u ! 0. Also, for centro-symmetric light intensity profiles, i.e., if Ið�x;�yÞ ¼ Iðx; yÞ, it follows from Eq.

(15) that uð�x;�yÞ ¼ �uðx; yÞ (as well as for /ðx; yÞ). Our numerical simulations have shown that during the

propagation process initial radially symmetric beams change into radially asymmetric beams. Nevertheless,
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Fig. 1. Comparison of the numerical solution to Eq. (11) (dashed line) and the analytical formula Eq. (15) (full line), for a 2D vortex

beam. (a) Modified potential along x direction. (b) Space-charge field along x, and (c) space-charge field along y axis.
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inversion symmetry is still preserved. Using both properties implies that Dnð�x;�yÞ ¼ Dnðx; yÞ during the
entire evolution of the beam (for T ¼ 0).

Combining Eqs. (10) and (15), one obtains
Dnðx; yÞ ¼ 1

2
n30reff



� kBT

e
ox lnð1þ IÞ

� E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I1

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ I

p 1

�

þ 1

p

Z 1

0

Z 2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Iðxþ q cos h; y þ q sin hÞ

p cos 2h
q

dq dh

	

� ox lnð1þ IÞffiffiffiffiffiffiffiffiffiffiffip
Z 1 Z 2p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Iðxþ q cos h; y þ q sin hÞ
p

cos h dq dh

��
; ð16Þ
2p 1þ I 0 0
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where the + sign corresponds to the self-focusing and the ) sign to the self-defocusing nonlinearity. The

expression in the curly brackets represents the space-charge field. This is the central result of the paper, and

it warrants a discussion.
5. Discussion

Even though Eq. (16) is a closed-form expression, its analytical usefulness is obscured by complexity.

Nonetheless, it can be used as a numerical tool, to estimate the refractive index distribution without solving

the exact equations. Furthermore, it provides an interesting insight into the various contributions to the

light-induced refractive index change. The most important term, the one proportional to ð1þ IÞ�1=2
, rep-

resents the contribution of the local isotropic part to Esc. It exhibits a different dependence on the light

intensity, in comparison to what is found in the 1D case (see Eq. (9)). Of course, the inverse square-root

dependence is restricted to the localized beams in 2D. As the beam increases its width along one direction

relative to the other, there is a smooth transition to the ð1þ IÞ�1
dependence. On the other hand, the two

integrals in Eq. (16) constitute an evidence of the nonlocal contribution, i.e., the values of Dn at ðx; yÞ are
also influenced by the values of the intensity at points other than ðx; yÞ. This is a new feature not en-

countered in the 1D case. The nonlocal contribution gives rise to the appearance of adjacent lobes in the

direction of external electric field, whose physical consequence is to introduce anisotropy and cause the light

profile to loose radial symmetry. Apart from the above mentioned restrictions, Eq. (16) provides an ex-

cellent description for the refractive index induced by a large variety of light beams and, in particular, for

the bright and dark solitary waves (they satisfy I1 ¼ 0 and I1 6¼ 0, respectively).

The form of Dn in Eq. (16) allows us to propose an improved model for the local isotropic space-charge
field, to be used specifically for the 2D soliton propagation:
Escðx; yÞ ¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I1

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ I

p � kBT
q

ox lnð1þ IÞ; ð17Þ
as opposed to the straightforward lifting of the 1D formula (Eq. (9)) to two transverse dimensions, which

was utilized in numerous papers [7–11]. The advantage of the new model becomes apparent upon com-

parison with the full numerical solution of Eq. (8), presented in Fig. 2. As expected, the approximate ex-
pression (17) fails to describe the anisotropic features of the 2D photorefractive nonlinearity, visible in

Fig. 2(a) in the form of protruding shoulders. The same applies to the inverse-intensity formula. However,

the square-root formula represents very well the central local part of the refractive index change.

Owing to the action of the external field, anisotropic solitons are squeezed in the direction of the field,

hence one can propose a class of saturable local models of the form
Escðx; yÞ ¼ E0

1þ I1
1þ I

� �a

� kBT
q

ox lnð1þ IÞ; ð18Þ
that accounts for the cases between 1D and 2D, and deals adequately with the evolution of beams with
different ellipticities. The parameter a is related to the ellipticity of a beam, a ¼ 1=ð1þ wx=wyÞ, with the

values 1=26 a6 1. The term wx=wy represents the ratio of beam diameters in the x and y directions. For

a ¼ 1=2 the model is suitable for the circular beams, and for a ¼ 1 it is suitable for the striped beams.
6. Beam propagation

The space-charge field dependence on the light intensity represents only a half of the story of spatial
solitons. The other half comes from the dependence of the light intensity, i.e., the beam envelope, on the
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space-charge field, and this is obtained by considering the paraxial wave equation for the beam propagation
in the crystal. In this manner the problem is closed. The paraxial equation for the PR solitons is of the form
2ikn0ozAþr2A ¼ �k2n40r33EscA; ð19Þ

where A is the beam envelope, k is the wave number in vacuum, n0 is the bulk refractive index, and r33
the effective component of the electro-optic tensor that couples to the space-charge field. It is assumed

that the beam propagates in the z-direction, and is polarized along the x-direction, which is also the di-

rection of the crystalline c-axis.
We launch different initial beams into the crystal and compare the influence of local and nonlocal models

for the space-charge field on the beam propagation. Two local models are utilized, the inverse-intensity

formula, Eq. (9), and the square-root formula, Eq. (17). Launching simple Gaussian beams leads to subtle

differences in the beam profile and similar propagation behavior in all the models. Hence we choose to

launch vortex-mode solitons with different topological charges, whose behavior is much more model-de-

pendent. The launching of more complex beams makes the isotropic models depart more from the an-

isotropic model. Still, the square-root formula provides for a better agreement with the anisotropic

behavior than the inverse-intensity formula.

It is known [12] that a vortex beam cannot be the stable solitonic mode of propagation through the PR
crystals, regardless of the model. Owing to the modulational instabilities, vortices self-focus into a number

of filaments and disintegrate during propagation. According to the anisotropic model, as well as experiment

[13], the vortex beam (of unit charge) decays within a fraction of diffraction length into two filaments, which

rotate (clockwise or counterclockwise, depending on the sign of the charge) towards the stable equilibrium

position, which is perpendicular to the direction of the external field. Afterwards the two beamlets oscillate

about the stable direction and recede along the y-axis (Fig. 3). According to the local models, the behavior

is considerably different.



Fig. 3. Breakup of the vortex beam with unit topological charge. (a) Square-root model. (b) Inverse-intensity model. (c) Anisotropic

model. The initial beam profile is the same in all three cases, and is visible in (c). Note widely different propagation distances for the

isotropic and anisotropic models.
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The propagation of vortices in isotropic models is much more stable. They can propagate for tens of

diffraction lengths before disintegrating. Such a drastic difference in the behavior of anisotropic and iso-

tropic models points to the inadequacy of describing vortex beams in PR crystals using local models.

Nonetheless, when the isotropic vortices eventually reach the break-up phase, the breaking of the square-
root model proceeds in stages similar to the anisotropic model, except that there exists no symmetry-

breaking stable direction in which the fragments would fly apart. Hence the vortex fragments initially rotate

about each other and then recede along straight paths that bear no clear relation to the external field. The

break-up of the inverse-intensity model proceeds in a more complicated manner, in that it initially breaks

into three filaments, which fuse into two asymmetric beams, to give the final two filaments. However,

depending on the values of initial parameters, the size of the vortex and its charge, the break-up of both

isotropic models, as well as the anisotropic model, can result in more than two fragments.

Finally, it is worthwhile mentioning that the angular momentum of the vortex in the anisotropic model is
not conserved. It drops fast as the vortex disintegrates, and oscillates about zero. The angular momentum

of the vortices in isotropic models is conserved as long as the vortices are intact, however it starts slowly to

decrease during and after the break-up phase, owing to the radiation that takes away part of the angular

momentum and of the power of the system (Fig. 4).
7. Conclusions

In conclusion, we have obtained a new analytical expression for the 2D space-charge field in PR crystals,

appropriate to the propagation of self-trapped optical beams. Based on this expression, an improved model
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for the local isotropic space-charge field in 2D is proposed, that agrees better with the numerical solution.

We test the model, together with the standard inverse-intensity local model, on the problem of the break-up

of vortex beams in PR crystals, which is known to exhibit very different behavior in the local and nonlocal

models. It is found that the vortices in isotropic models exhibit a much more stable propagation than the

vortices in the anisotropic model, eventually breaking into two or more filaments that fly apart. The vortex

of charge 1 in the anisotropic model breaks right away into two filaments that fly apart along the stable
direction perpendicular to the external field.

In isotropic models the power and the angular momentum of stable self-trapped beams are conserved. In

numerical simulations the power and the angular momentum of propagating beams may become not

conserved, if the beams suffer instability. In the case of vortices, they remain constant as long as the shape

of the vortex is preserved, but when the vortex starts disintegrating, it radiates more strongly, and the part

of power and angular momentum is lost to radiation. Since we are using absorbing boundary conditions at

the transverse edges of the computational domain, the values of power and angular momentum start de-

creasing after the break-up of vortex. Similar findings have been reported for the case of spiraling solitary
waves [12,14]. On the other hand, the angular momentum of the anisotropic model is not conserved from

the beginning, since the model represents a noncentral mechanical system in the transverse plane. For such

a nonintegrable model, there is no reason for the angular momentum to be conserved.
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