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Abstract 

Spatial and dynamical effects in double phase conjugate mirrors are investigated analytically and numerically. A variety 
of spatial and temporal effects are observed, such as beam-bending, self-defocusing, mode oscillations and irregular pattern 
formation. We conclude that in more than one spatial dimension the double phase conjugate mirror is a convective oscillator. 
For strong beam couplings and strong diffraction we find that the oscillation threshold is not well defined, and that the double 
phase conjugate mirror becomes unstable. An improved agreement with experimental results is obtained. 

Photorefract ive (PR) oscillators or self pumped  
phase conjugate mirrors  (PCM)  are essential parts of  
any envisioned device employing optical phase con- 
jugat ion (OPC) [ 1 ]. Experimental  realization of  PR 
oscillators is not very difficult, understanding their  
behavior  is. An especially t roublesome aspect o f  their  
behavior  are inherent  instabilities. Another  problem 
is poor  understanding of  transverse effects and mode 
coupling in these oscillators. 

An interesting geometry from the applicat ions point  
o f  view is the double phase conjugate mirror  (DPCM)  
(Fig. 1 ). Assuming the input  waves to be mutually in- 
coherent (no reflection gratings),  the beam A ~ is phase 
coherent with A4 and the beam A3 is phase coherent 
with A2. Thus, they can pairwise bui ld transmission- 
type gratings and the PC signal can be amplif ied at the 
expense of  the pump even though the pump and the 
probe are incoherent.  This arrangement is very con- 
venient for remote operation,  for example communi-  
cation through the atmosphere or through fibers. 

DPCM was shrouded in controversy almost from 
the conception. The possibil i ty of  DPCM was sug- 
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Fig. 1. Double-phase conjugate mirror. The pump beams A2, 
A 4 enter the crystal from the opposite sides. A1 is the PC of 
A2 and A3 is the PC of A4. The thickness of the crystal d is 
set to 1 cm. 

gested by Cronin-Golomb et al. [ 1 ], but was deemed 
improbable  by the same group, because of  the compet-  
ing conical emissions. It took a few years for Fischer 
and his group [2] to demonstrate  the feasibility and 
to establish the operat ion of  DPCM. What  made it 
possible is the preferential  amplif icat ion of  both con- 
jugate beams by a part icular  set of  fanning gratings. 

A more recent controversy surrounding DPCM is 
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concerned with the question whether DPCM is an os- 
cillator or an optical amplifier. Plane-wave analysis 
suggests that DPCM is indeed an oscillator [3]. In 
the models with two and three spatial dimensions, 
however, this is not clear. The theory presented in 
[4] claims that DPCM is still an oscillator, while the 
theoretical and experimental analysis of  [5] shows 
that DPCM is a convective amplifier. We believe that 
DPCM is a convective oscillator. 

To understand the operation of  DPCM, we study 
its spatio-temporal behavior. The basic equations de- 
scribing four-wave mixing (4WM) processes in parax- 
ial approximation are of  the form: 

O~AI + i f  AAl - o~Al = QA4,  (1) 

OzA3 - i f  AA3 + c~A3 = -QA2 ,  (2) 

OzA2 - i f  AA2 + oLA2 = QA3, (3) 

OzA4 + i f  zJA4 - o~A4 = - O A l ,  (4) 

where d is the transverse Laplacian 0 2 + 0y 2 and f is 
a parameter controlling the diffraction. In scaled co- 
ordinates it is proportional to the inverse of  the Fres- 
nel number f = (4nF)  - l .  The Fresnel number for 
this geometry is given by F = noa2/2d, where no 
is the background index of  diffraction, a is the full- 
width half maximum of  a incoming pump beam, 2 is 
its wavelength and d is the length of  the PR crystal 
(propagation length). The bar denotes complex con- 

jugation, ~ is the linear absorption and Q is the am- 
plitude of  the grating in the crystal that is generated 
by the interference of  waves at allowed k-vectors. In 
the operation of  DPCM only transmission gratings are 
allowed. The temporal evolution of  Q is well approx- 
imated by a relaxation equation of  the form: 

F 
rOtQ + Q = ~- (AtA4 + A2A3),  (5) 

where r is the relaxation time of  the grating, I is the to- 
tal intensity and F is the PR coupling constant times 
the crystal thickness. We are not concerned with the 
frequency detuning, and are assuming diffusion domi- 
nated build-up of  gratings. Hence F is real. The waves 
are following the changes in the crystal adiabatically, 
therefore the temporal derivatives in Eqs. ( 1 ) -  (4) are 
ignored. Likewise, the spatial derivatives are neglected 
in Eq. (5), since the diffusion effects are controlled by 
the slow electronic processes in PR crystals. For the 

moment we consider only one transverse dimension 
(x) .  

The stationary absorptionless plane-wave solutions 
(A = 0z = 0) of  Eqs. (1 ) - (4 )  and (5) are of  the 
form [6]: 

AI = C4 sin(0 - 00), A 2  = C2cos(Oa - 0 ) ,  (6) 

A3 = C2sin(Od - 0) ,  A 4 = C 4 C O S ( 0  --  0 0 )  , (7) 

where 

tan(0)  = tan(00) e x p ( a F z ) ,  (8) 

and the parameter a is found from the transcendental 
equation 

a = tanh ( a F / 2 ) .  (9) 

A sharp threshold oscillation condition F~h = 2 fol- 
lows from this equation. The boundary values 00 at 
z = 0 and Oa at z = d are given by: 

tan(00) = exp ( ~ - ) V  ~ - q *  ~ q . ,  

tan(Od) = e x p ( a - ~ ) ~  a - q *  a + q* ' (10) 

where q* = (IC412 - IC212)/(IC412 + IC212) is the ra- 
tio of  the input power flux to the total input intensity. 
Here C2 = A2(z  = d)  and C4 = A4(2 = 0) denote 
the given initial amplitudes. From these equations 
one obtains simple relations between the experimen- 
tally measured quantities, the transmissivities To = 
IAId/C4I 2, Ta = ]A30/C212 and the reflectivities R0 = 
1A3o/C4] 2, Rd  = lAId~C2] 2 at the opposite faces of  the 
crystal: 

To = Td = T =  sin2(u), R0 = T/q ,  Rd = q T ,  

(11) 

where u = Od -- 00 is the so-called total grating action, 
and q = 1C4/C212 is the ratio of  input beam intensi- 
ties. We use these solutions and relations as a check 
on our numerical procedure for the treatment of  Eqs. 
(1 ) - (5 ) .  

The procedure for solution of  Eqs. (1 ) - (5 )  with 
the inclusion of  transverse effects consists of  a beam 
propagation method [7] for the spatial problem of 
A1 - A4, and a Runge-Kutta-like method for the tem- 
poral problem of Q. The details of  the method are 
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given elsewhere [8]. In the plane-wave case ( f  = 
0) we find excellent agreement between the numeri-  
cal and the analytical solution (see Fig. 2a). If  trans- 
verse effects are included and Gaussian input beams 
are used, the intensities of the PC beams (I~, 13) de- 
crease (Fig. 2b) as compared to the plane-wave case. 
The inclusion of diffraction is always detrimental to 
the process of OPC. Likewise, the inclusion of absorp- 

tion is also detrimental to the process of OPC. 
Further, with the inclusion of transverse effects an 

interesting phenomenon is observed: self-bending of 
PC beams. Fig. 3a depicts a tilt of the beam 13 away 
from the center at x = 0. This is a genuine transverse 
effect, caused (and controlled) by the finite beam 
waist and not the (possible) phase mismatch. The 
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Fig. 2. (a) Checking numerics with the plane-wave solu- 
tions (points: analytical results, curves: numerical results). 
(b) Intensities I i ( x  = 0, z) in the crystal with Gaus- 
sian input beams 12,4 = C2,4 exp(-x2/tr 2) and finite f 
( f  = O.O1,F = 3, C2, 4 = 1,a = 0.2). 

Fig. 3. Output profiles 12 (x) (dashed line) and 13 (x) (full 
line) versus the transverse coordinate x at z = 0. (a) 
f = 0.01, (b) f = 0.05. For reference, the pump beam 
14 (x) (dotted line) is also plotted. In (a) self-bending of 
beams is evident, in (b) they acquire a more complicated 
transverse structure. Other parameters are as in Fig. 2. 
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physical origin of  self-bending is the convective flow 
of  energy out of  the interaction region [5]. It leads 
to the degradation of  PC beam quality. Self-bending 
is observed not only in the double phase conjugation, 
but in the standard OPC as well. 

I f  the influence of  diffraction is increased (higher 
value o f f  ), a further spatial widening of  the PC beam 
profile is observed, with the appearance of  two (or 
more) local maxima of  I3 (x),  due to self-defocusing 
in the medium (Fig. 3b). The drift of  output profiles, 
as mentioned, is caused by the convective flow of  en- 
ergy out of  the interaction region. This is confirmed if 
one plots the amplitude of  the grating Q in the crystal 
(Fig. 4a). The amplitude acquires an asymmetric spa- 
tial distribution. The self-bending and self-defocusing 
of  A3 can clearly be seen in the transverse beam distri- 
bution, as it propagates through the crystal (Fig. 4b). 

Our results agree with the recent work on two- 
dimensional DPCM [5] only for small influence of  
diffraction and only qualitatively. We confirm that in 
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Fig. 4. Intensity of (a) the grating amplitude Q and (b) the 
PC beam/3 in the crystal (F = 3, a = 0.2, f = 0.05). 

this case DPCM is not a simple oscillator. The most 
appropriate description is that it represents a convec- 
tive oscillator. Transverse convection is evident in 
the system as soon as the transverse spread of  beams 
is taken into account. Also, the existence of  a diffuse 
threshold for oscillation is evident in our numerical 
simulations [8]. The sharp threshold condition on/~ 
from the plane-wave case now broadens out. Differ- 
ent seeds are amplified to different levels. However, 
with increasing/~ and f the DPCM becomes a poor 
(nonlinear and unstable) amplifier. An instability 
threshold is soon reached, where temporal behavior 
becomes more complicated. Strong couplings and 
strong diffraction lead to more complicated spatio- 
temporal phenomena. The reason for discrepancy 
with Ref. [5] is probably that the theory advanced 
there is linear (it applies to low reflectivity levels) and 
that it is derived for a rather special two-dimensional 
geometry. It contains no transverse Laplacian. 

The inclusion of  transverse effects improves the 
agreement between theoretical and experimental re- 
sults. The theory based on plane-wave analysis consis- 
tently gives too high estimates for the intensity reflec- 
tivity. Also, it can not account for the asymmetry ob- 
served experimentally in the plots of  transmissivities 
and reflectivities as functions of  the input beam ratio. 
However, when transverse effects are included the 
numbers are comparable. This remains true in both 
one or two dimensional transverse case (however, the 
value o f f  might be different in the two cases). Fig. 
5 offers a comparison between the numerical results 
with transverse effects and the experimental results. 
Note the asymmetry in the experimental curves for 
the transmissivities and the corresponding asymme- 
try in the numerical curves. It should also be noted 
that f is used here as a parameter displaying the cor- 
recting influence of  transverse effects, and not as an 
experimental datum. The experimental value of  f is 
not known to us. An even better agreement with ex- 
periment is obtained by including both the transverse 
effects and the linear absorption. The curves can also 
be fit by the absorption only, however the asymmetry 
is missing then. 

As mentioned, increasing/~ beyond the oscillation 
threshold leads to complicated oscillations. In Fig. 6 
we present oscillations (limit cycles) in the reflectiv- 
ity and the transmissivity on both faces of  the crystal. 
Now the transmissivities To and Td are different from 
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Fig. 5. Comparison with the experimental results of Ref. 
[3]. (a) Reflectivities R 0, R d at both sides of the crystal as 
functions of the pump ratio q. Filled dots are the experimen- 
tal values of R 0, crossed dots are the values of R d. Dashed 
lines are polynomial fits through the experimental points. 
Full lines are numerical curves with r = 4 (as suggested 
in [ 3 ] ) and f = 0.121. (b) Corresponding transmissivities 
To, Td. One of the full lines is a fourth-order polynomial fit 
through the experimental points for To (to guide the eye), 
and the other is the corresponding numerical curve. Dashed 
lines are the same for T d. Numerical curves are kept sep- 
arated from the experimental ones, in order to display the 
symmetry breaking. 

each other, however the formulae R0 = To~q, Rd  = 

q Td from the plane-wave case still hold. These oscilla- 
tions become more irregular as the value of the wave 
coupling constant F is increased. However, no chao- 
tisation is observed, unless r is made complex [8,9]. 

The inclusion of the other spatial dimension (y) 
leads to rich spatial and temporal phenomena. We ar- 
range the axes in the x - y plane so that the wave vec- 
tor of the grating points along the y = x direction. 
Here we confine ourselves only to the approach to 
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Fig. 6. Limit cycle oscillations of the transmissivities and 
the reflectivities for two values of the pump ratio q. Here, 
as in Fig. 5, the transverse coordinate is integrated out. a) 
Transmissivities T O (solid line) and T d (dashed line) at 
q = 10. The same curves (on a different scale) also depict 
R0 and R d. b) Reflectivities R 0 and R d at the degenerate 
point q = 1. At degeneracy all four quantities are the same, 
and execute the same motion. 

stable transverse patterns. Fig. 7 depicts a stable two- 
dimensional pattern that has developed in the DPCM 
with two transverse dimensions, starting from simple 
Gaussian humps for all beams. The primary peaks ar- 

range themselves along the y = x axis, while the sec- 
ondary peaks appear to the left and right of the axis, 
keeping the order and the prescribed x ~ y symme- 
try in force. This general arrangement is consistent 
with the latest experimental results [10]. Depending 
on the initial and the boundary conditions, other sta- 
ble patterns are possible. Again, increasing F leads to 
complicated dynamics of patterns. However, no chaos 
is observed as long as F remains real. An analysis of 
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Fig. 7. Stable two-dimensional pattern of 13 at z = 0 after 
1000 temporal cycles, with F = 3 , f  = 0.05. b) Corre- 
sponding contour-plot displaying more clearly the built-in 
x ~ y symmetry of equations. This symmetry is highlighted 
by the chosen y = x direction of the gratings wave vector. 

stable patterns that can develop in PR oscillators is 
the first step in an investigation of  spat io- temporal  
instabilities and chaotizat ion through the generation 
and dynamics of  structural defects. Our  current re- 
search efforts are directed toward the analysis of  two- 
dimensional  pat terns and dynamical  effects that fol- 
low their  formation [ 8 ]. 

In summary,  we have considered transverse and 
temporal  effects in DPCM. We find that the inclusion 
of  the finite lateral beam extension lowers the reflec- 
tivities, bends the beams, speeds-up the convergence 
and resolves the controversy about the nature of  dou- 
ble phase conjugation. 

In the plane-wave approximat ion the DPCM is an 
oscillator with a gain threshold. Exponential  growth 
of  PC beams is observed above the threshold for ar- 
bitrarily small seeds. Nothing is observed below the 
threshold. 

In the transverse case the DPCM is a convective 
oscillator. The gain threshold is not well defined. It 
is smeared over an interval. Different seeds are am- 
plified to different levels. Intensity distr ibutions of  
PC beams are shifted and asymmetric.  The bending 
of  beams is caused by the convective flow of  energy. 
The intensity reflectivity at tained is lower than in the 
plane-wave case. However, the transverse case con- 
verges more rapidly. For  strong couplings and strong 
diffraction, the DPCM becomes a poor phase conju- 
gator. 

The inclusion of  transverse effects improves the 
agreement with the experimental  results. It helps 
explain the experimentally noted asymmetry in the 
transmissivit ies at the opposite faces of  the crystal 
as a function of  the input beam ratio. Asymmetry 
is the consequence of  the nonreciprocity in the pro- 
cess of  double phase conjugation, and is absent in 
the plane-wave theory. Finally, for strong couplings 
instabilities are observed, in that the reflectivities do 
not settle onto any one value, but oscillate regularly 
or irregularly (for F complex).  Such spatio-temporal  
instabili t ies are under current investigation. 
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