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Interconnected ring oscillators
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Abstract. Threshold and operation conditions of the interconnected photorefractive ring
oscillators are investigated, using the grating action method. Three types of two connected
oscillators are considered, the first one consisting of two transmission grating crystals, the
second one of two reflection grating crystals, and the third one of one transmission and one
reflection grating crystal. It is found that, under similar conditions, the
transmission–transmission ring possesses the lowest threshold and attains the highest
reflectivity of the three.
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1. Introduction

Photorefractive (PR) ring oscillators are interesting for
potential applications in optical communications and
computing [1–4]. Of special interest are those geometries that
produce phase conjugate (PC) beams of mutually incoherent
input beams. The double PC mirror system [5] was, for a long
time, considered to be the favourite geometry. Mamaev and
Zozulya [6] introduced three novel types of interconnected
ring geometries that allow for such phase conjugation.
It seemed appropriate to investigate their threshold and
operation conditions.

The geometries of interest are presented in figure 1.
They involve two PR crystals and two incident beams. After
passing through the crystal, each beam is directed (with the
help of external mirrors) to intersect with the other beam
in the other crystal. In this manner two four-wave mixing
(4WM) regions are formed in the crystals, and depending
on the type of diffraction gratings that the incident and
scattered waves produce, three kinds of interconnected rings
are possible. One kind is when the transmission gratings
(TGs) are prevalent in both regions, the other kind is when
the reflection gratings (RGs) are prevalent, and the third kind
is when one grating is a TG and the other is a RG. Even
though all three kinds of ring are realized experimentally
in [6], only results concerning the TG–TG ring are reported
there.

We consider all three cases of interconnected rings
theoretically, using the method of grating action [7]. We
investigate the threshold and operation conditions, and
compare the strengths and weaknesses of the different
geometries. We find that the TG–TG ring is the preferable
geometry, possessing the lowest threshold and the highest PC
reflectivity of the three.

§ Corresponding author.

In section 2 of this paper the method is introduced,
and section 3 contains some examples. The following three
sections contain the discussion of each individual geometry,
and section 7 summarizes the conclusions.

2. Method

General methods for solution of 4WM equations in PR
media have been developed by Cronin-Colomb et al [1]
and Zozulya and Tikhonchuk [8]. Both methods lead to
complicated expressions. We use the grating action method,
which offers simpler expressions, but is applicable only to
plane-wave, degenerate, and steady-state cases of 4WM. The
coupling constants are real then and the phases of grating
amplitudes are constant. In reality, these conditions are not
very restrictive, and are met in most of the PC situations.
Specifically, they are convenient for the situations where
the threshold and operation conditions of PR oscillators are
investigated. We introduce the method by analysing the
simple TG and RG rings, which will be instructive for the
later more complicated interconnected cases.

Considering an isolated 4WM interaction region (IR) in
a TG, the output waves are connected with the input waves
through one quantity, the grating action u [4]

A1d = A10 cos u− A40 sin u,

A4d = A10 sin u + A40 cos u,
(1a)

A20 = A3d sin u + A2d cos u,

A30 = A3d cos u− A2d sin u,
(1b)

where the subscripts 0 and d denote the two entrance/exit
faces of the IR, and u is defined as

u = 1

d

∫ d

0

�|Q|
I

dz, (2)
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Figure 1. Interconnected rings. (a) TG–TG ring, (b) RG–RG
ring, (c) TG–RG ring.

where � is the coupling strength of wave mixing (amplitude
coupling constant times the thickness d of the IR),
Q = A1A4 + A2A3 is the amplitude of the grating, and I =
|A1|2 + |A2|2 + |A3|2 + |A4|2 is the total intensity. The grating
action is found from the expression

(A10A40 + A2dA3d + c.c.) cot u + I10 − I2d + I3d − I40

= aI0 coth

(
a�

2

)
, (3)

which involves only the input waves. The overbar stands for
complex conjugation. The ‘order’ parameter a is found from
the conserved quantity

a2I 2 = 4|Q|2 + P 2, (4)

where P = I1 + I2 − I3 − I4 is connected with the Poynting
flow through the crystal. a is called the order parameter
because its minimal value signifies the onset of oscillation.
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Figure 2. Simple rings. (a) TG ring, (b) RG ring.

Similar expressions hold for the 4WM process through
the RG. The output and input waves are connected via [4]

A1d = A10 sech u + A3d tanh u,

A4d = A40 sech u + A2d tanh u,
(5a)

A20 = A2d sech u− A40 tanh u,

A30 = A3d sech u− A10 tanh u,
(5b)

and the same equation (2) defines the grating action, with
the difference that Q = A1A3 + A2A4 now stands for the
amplitude of the RG. The practical expression giving u is

(A10A3d + A2dA40 + c.c.) cosech u + I2d + I3d − I10 − I40

= (I10 + I40 + I2d + I3d) coth

(
�

2

)
. (6)

There exists no order parameter in the RG, or formally a = 1.
The RG expressions can be formally obtained from the TG
expressions by a symmetry transformation:

{sin u, cos u}TG ←→ {− tanh u, sech u}RG, (7a)

provided that beams 3 and 4 are switched at the same time:

{I40, I4d}TG ←→ {I3d , I30}RG. (7b)

The quantities of practical interest are the reflectivities and
transmissivities of the 4WM process:

R = Ireflected/Iinput, T = Ioutput/Iinput. (8)

Real devices or PC mirrors are formed by connecting
the output beams of one or more IR with the input beams,
using external mirrors or total internal reflections within the
crystal. A number of such devices are in use [1,2,5,9]. For the
purpose of presenting the method, and for later convenience,
we analyse two such devices, the TG and RG rings.

3. TG and RG rings

The simple TG and RG rings are depicted in figure 2. The
ring passive PC mirror in TG was first analysed in [1]. By
the grating action method it has been analysed in [10]. The
RG self-pumped ring mirror was investigated by Dyakov
et al [11] using the method of [6]. We apply the grating

466



Interconnected ring oscillators

action method. In the TG geometry the external mirrors
provide additional conditions on the input beams A40 = tA20

and A10 = tA30, where t is the transmissivity of the feedback
loop. When these conditions are used in equations (3) and (4),
one obtains the following expressions:

1 + a coth

(
a�

2

)
= 2|t |2

1 + |t |2 (sin2 u− cos2 u), (9a)

cos(2u) = 1 + |t |2
2|t |

√
1− a2, (9b)

R = 4|t |2 sin2 u cos2 u. (9c)

The threshold is found in the limit u→ 0,

ath�th = ln
2|t |2

1 + |t |2 , (10a)

where the minimum value of a equals

ath = 1− |t |2
1 + |t |2 . (10b)

The steady state is determined by solving equations (9a)
and (9b) foru anda, given the values of� and t . Equation (9c)
then supplies the steady-state value of R. The most efficient
operation is achieved at the maximum value of R, which
occurs at um = −π/4. At that point a → 1, which implies
� → −∞. This, of course, is not possible. Nonetheless,
given the range of � that can be achieved in the crystal, the
device will operate at the maximum value of the coupling
strength available.

The major difference between the TG and RG procedure
is the lack of the order parameter in the RG case. The grating
action analysis, when applied to the RG ring mirror, leads to
the expressions

1 + coth

(
�

2

)
= 2|t |2

1 + |t |2 (tanh2 u− sech2u), (11a)

R = 4|t |2 tanh2 u sech2u. (11b)

The threshold coupling is given by

�th = ln
|t |2

1 + 2|t |2 , (12)

and the reflectivity is maximum (R = |t |2) at the point
um = − sinh−1 1. This again implies �→−∞. Hence, the
device will tend to operate at the highest value of � available.
For such a � one solves equation (11a) for the operative value
of u, and determines the steady-state value of R. Figure 3
compares the reflectivities of the TG and RG rings.

In the case of devices with one IR, the analysis is simple.
For devices with more than one IR, one has to apply the same
analysis to each. The complication is that one obtains systems
of coupled nonlinear algebraic equations, and to determine
the threshold and operation conditions one has to employ
Fermat’s principle, which requires that the device should
operate at the extremum value of the total grating action.
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Figure 3. Reflectivities of the simple rings (a) as functions of the
coupling strength and (b) as functions of the grating action, for
different values of the mirror reflectivities. (1) |t | = 1,
(2) |t | = 0.8, (3) |t | = 0.6.

Actually, Fermat’s principle requires that the optical path
within the device is extremal. The optical path is the line
integral over the index of refraction along the propagation
path. In a PR crystal, the index of refraction contains the
contributions from the bulk n0 plus the change, n1 ∼ |�Q|/I ,
coming from the grating [1]. This change is sinusoidally
modulated by the grating wavevector K , i.e. it represents the
amplitude of the change in the index of refraction. When
integrated over the propagation path, it gives the grating
action multiplied by the thickness d of the IR†. Hence, the
physical meaning of the grating action is that it represents
the magnitude of the change in the optical path within the
crystal, due to the establishment of 4WM gratings.

Before going on to the details of each individual
geometry, we should note some features that are common
to all of them. First, owing to the geometry of coupling,
there exists only one expression for the transmissivity of each
of the devices. This is less obvious for the TG–RG ring,
but nonetheless it is true. Second, the relation between the
reflectivities of each device is given by

R
′
/|q|2 = |q|2R, (13)

where |q|2 is the ratio of input intensities and R′ and R are
the reflectivities of the two input beams. Hence, one of the
reflectivities can be larger than 1.

† The integral over the modulated change does not average to zero, because
|�Q|/I is not constant. This is one of the differences between PR dynamical
gratings and fixed gratings.
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Figure 4. Threshold curves of the interconnected rings for
different values of |t | and |q|. (1) |t | = 0.8, |q| = 1; (2) |t | ≈ 0.5,
|q| = 0.5.

4. TG–TG ring

Some of the results concerning the TG–TG ring have been
reported in [12]. Interconnected rings contain (at least) two
IRs. To distinguish between them, we denote one IR by a
prime. When equations (3) and (4) are applied to the situation
presented in figure 1(a), the following relations are obtained:

cos(u + u′) = 1 + |tq|2
2|tq|

√
1− a′2, (14a)

1 + a′ coth

(
a′�′

2

)
= −|tq| sin u

sin u′
√

1− a′2 (14b)

for the primed region, and

cos(u + u′) = |t |
2 + |q|2
2|tq|

√
1− a2, (14c)

1 + a coth

(
a�

2

)
= − |t ||q|

sin u′

sin u

√
1− a2 (14d)

for the unprimed region. |q|2 = |A40|2/|A′40|2 is the ratio
of input intensities and |t |2 is the transmissivity of all loops
involving external mirrors (equal to the product of mirror
reflectivities). The device transmissivity and reflectivity are
given by

T = |A
′
20|2
|A40|2 =

|A20|2
|A′40|2

= |t |2 cos2(u + u′), (15a)

R = |A30|2
|A40|2 =

|t |2
|q|2 sin2(u + u′). (15b)

To determine the steady state of the device, one should
solve equations (14) for the values of a, a′, u and u′. However,
to find the threshold and operation conditions one need not
go through the solution.

The threshold is determined from the universal relation
involving the parameters a′, a, �′ and �. Such a relation is
obtained by combining equations (14b) and (14d):[

1 + a′ coth

(
a′�′

2

)] [
1 + a coth

(
a�

2

)]

= |t |2
√

(1− a′2)(1− a2). (16)
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Figure 5. Total grating action v = u + u′ as a function of coupling
strengths. (a) TG–TG ring, (b) RG–RG ring, (c) TG–RG ring. In
all cases |t | = 0.8 and |q| = 1.

This relation provides the threshold curve in the plane of
(�, �′) parameters, once the minimum values of a′ and a are
found. They follow from equations (14a) and (14c) in the
limit u′ → 0, u→ 0:

a′th = 1− |tq|2
1 + |tq|2 , ath = |t |

2 − |q|2
|t |2 + |q|2 . (17)

A sample of threshold curves is drawn in figure 4 for
all three types of interconnected rings. A consequence of
these results is that the threshold values of coupling strengths
depend not only on the reflectivities of external mirrors, but
also on the ratio of input intensities. Figure 5 presents the
total grating action v = u + u′ as a function of �′ and �.
The threshold curves are found at the intersection of the
action surface with the plane (�, �′). Figure 6 depicts the
reflectivities along the line �′ = �. We defer discussion of
these results until the conclusions.
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Figure 6. Reflectivity along the line � = �′ for the following
parameters: (1) |t | = 0.8, |q| = 1; (2) |t | = 0.8, |q| = 0.7;
(3) |t | ≈ 0.5, |q| = 0.5.

Interesting special cases are for t = 1 or q = 1. One
finds then that

�th + �′th = 1 + |q|2
1− |q|2 ln |q|2, (18a)

and

exp(−ath�th) + exp(−ath�
′
th) = 1 + |t |2

|t |2 . (18b)

In principle, one should not assign fixed values of �′ and
� to the crystal. They can vary due to material parameters
and the geometry of mixing. There exist intervals of allowed
values of�′ and�, starting from the threshold and going to the
maximum achievable under given conditions. The question
is then at what values of �′ and � the device will operate.

The answer is provided by Fermat’s principle. The
device should operate at the extremum value of u′ + u. The
analysis of equations (14) and (15) reveals that this should
happen along the line u′ = u, when the two IR contribute
equally. The expressions for each IR then reduce to the case
of the simple TG ring, with the provision of an additional
parameter q. However, this does not mean �′ = �. As long
as t �= 1 and q �= 1, the device will operate at unequal values
of the coupling strengths.

5. RG–RG ring

Application of equation (6) to both IRs leads to the relations

1 + coth

(
�′

2

)
= 2|tq|2

1 + |tq|2 sech2u

(
sinh2 u− sinh u

sinh u′

)
,

(19a)

1 + coth

(
�

2

)
= 2|t |2
|t |2 + |q|2 sech2u′

(
sinh2 u′ − sinh u′

sinh u

)
,

(19b)
and the transmissivity and the reflectivity are given by

T = |A1d |2
|A′10|2

= |A
′
4d |2
|A40|2

= |t |2(sech u′sech u− tanh u′ tanh u)2, (20a)

R = |A30|2
|A40|2 =

|t |2
|q|2 (tanh u′sech u + tanh u sech u′)2. (20b)

In this geometry |q|2 = |A40|2/|A′10|2. There are no
order parameters. The threshold curves follow from the
relation[

1 + coth

(
�′th
2

)] [
1 + coth

(
�th

2

)]

= 4|q|2|t |4
(|t |2 + |q|2)(1 + |tq|2) , (21a)

and a sample is presented in figure 4. The corresponding total
grating action is represented in figure 5(b) and the reflectivity
in figure 6. Equation (21a) can be transformed into an explicit
dependence

exp(�′th) =
1− exp(�th)

1 + exp(�th)(|t |2 + |q|2 + |t |2|q|4)/|t |2|q|4 .

(21b)

Concerning the operation of the RG–RG ring, the most
efficient working is again achieved at u = u′. One then
recovers the simple RG ring formulae. Similar to the TG–TG
ring, the steady-state operation need not proceed at �′ = �.

6. TG–RG ring

Application of the grating action method to the mixed ring
leads to mixed results. There are three equations, for u′, a′,
and u:

cos u′ − sin u′ sinh u = 1 + |tq|2
2|tq| cosh u

√
1− a′2, (22a)

1 + a′ coth

(
a′�′

2

)
= −|tq| tanh u

sin u′
√

1− a′2, (22b)

1 + coth

(
�

2

)
= 2|t |2
|t |2 + |q|2

sin u′

sinh u
(sin u′ sinh u− cos u′),

(22c)
while the expressions for the transmissivity and the
reflectivity are of the form

T = |A4d ′ |2
|A40|2 = |t |

2sech2u(cos u′ − sin u′ sinh u)2, (23a)

R = |A30|2
|A40|2 =

|t |2
|q|2 sech2u(sin u′ + cos u′ sinh u)2. (23b)

The universal relation[
1 + a′ coth

(
a′�′

2

)] [
1 + coth

(
�

2

)]

= |t |
2(1 + |tq|2)
|t |2 + |q|2 (1− a′2) (24)

provides the dependence of a′ on the coupling strengths
�′ and �. It also offers the threshold condition, once the
minimum value of a′, which is the same as in equation (17)
for the TG–TG ring, is substituted. A few curves for different
values of the parameters are presented in figure 4 and the
total grating action is shown in figure 5(c). It is seen that the
threshold curves approach those of the TG–TG ring at high
values of �′ and low values of �, and those of the RG–RG
ring at low values of �′ and high values of �. The reflectivity
is shown in figure 6.
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7. Conclusions

We have investigated theoretically the three types of
interconected PR rings, introduced some time ago by
Mamaev and Zozulya [6]. The TG–TG, RG–RG and
mixed TG–RG geometries are considered, using the grating
action method. The thresholds and reflectivities of all three
geometries are found, and Fermat’s principle invoked to
determine the operation conditions. When one compares the
thresholds and the reflectivities of the three interconnected
rings, it is seen that the TG–TG ring is the most useful, the
RG–RG is the least useful, and the TG–RG comes in between.
The TG–TG ring possesses the lowest threshold and attains
the highest reflectivity, as can be seen from figures 4 and 6.
Exactly the opposite holds for the RG–RG ring.

In all the geometries, the threshold values of coupling
strengths need not be fixed numbers, and may vary,
depending on such parameters as the ratio of input
intensities and the transmissivity of connection loops.
The operation of these devices is governed by Fermat’s
principle. The TG–TG and RG–RG rings preferably
work at the equal values u′ = u of grating actions
as this leads to the maximum value of the reflectivity.
It does not mean that the coupling constants at the
operation point are equal. Depending on the values of
mirror reflectivities and the ratio of input intensities, the

devices start and operate at unequal coupling strengths in the
two IRs.
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