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Multigrating phase conjugation: chaotic results
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Slowly varying envelope wave equations describing degenerate four-wave mixing (4WM) in photorefractive
phase-conjugate mirrors are solved exactly, in terms of quadratures. Multigrating 4WM geometry is assumed,
with the transmission and reflection gratings contributing equally and with the counterpropagating pump-
pump interaction accounted for. The original boundary-value problem is transformed into an initial-value
problem, which is treated by an iteration procedure. It is shown that within the iterative boundary-fitting
procedure the multistability of solutions takes place and that the intensity reflectivity of the mirror may be-
come chaotic. The strange attractor thus arising is analyzed with the use of standard methods of nonlinear
dynamics.

1. INTRODUCTION

Owing to the great potential applicability of optical
phase conjugation (OPC), instabilities arising in phase-
conjugating systems have attracted considerable attention
recently.' The interest in such systems stems from the
fact that they effectively achieve time reversal of a propa-
gating wave front, with rich possibilities of lensless auto-
correction in various optical instruments.2 However,
being by its nature a high-gain self-oscillating process, the
generation of phase conjugate wave fronts is also prone to
instabilities.3`

Chaos in OPC thus far has been displayed in two kinds
of experimental arrangement: resonator geometries4

and single photorefractive crystals.5 6 While the occur-
rence of chaos in resonator geometries should present no
surprise, the origins of chaos in single crystals is not yet
fully understood. Instabilities in such systems often fol-
low from a boundary-value analysis of steady-state equa-
tions and should be handled with caution. It may sound
surprising, but numerical instabilities may follow the
same routes to chaos as those taken by the underlying
models.

Resonators, conjugate or not, represent textbook ex-
amples of systems apt to become chaotic. The ingredi-
ents necessary for chaos are readily available in such
systems: nonlinearity is provided by the phase conjugate
(PC) or any other active or passive medium, driving comes
from the laser beams pumping the medium, and feedback
is caused by the normal mirror enclosing the cavity. It
would indeed present a surprise if such systems were not
chaotic in some region of the parameter space.'

The situation with single crystals, or individual PC mir-
rors, is not so clear. Instabilities or chaos in single crys-
tals with a standard four-wave mixing (4WM) geometry
arise under different operational conditions or in differ-
ent models of 4WM operation. One prominent model is
given in Ref. 6, where it is suggested that multigrating

operation of the PC mirror and multiple interaction re-
gions are essential for the appearance of chaos. Another
model is given by the present authors,8 in which the crucial
destabilizing element is an externally applied dc electric
field. In both models operation above the self-oscillation
threshold (i.e., strong enough coupling between the waves)
is assumed, and an analysis of time-dependent equations
is carried out.

In this paper we investigate stable solutions and insta-
bilities arising in the single interaction region of a pho-
torefractive crystal, assuming multigrating 4WM, no
external electric field, and a steady state. Slowly varying
envelope equations are solved with the use of a novel inte-
gration procedure, in which the equations are solved ex-
actly in terms of quadratures, and the fitting of boundary
values is achieved by an iteration procedure in the
parameter space. The iterative mapping may become un-
stable in some regions of the parameter space, causing
multiple solutions of wave equations and eventually
chaotic reflectivity of the crystal.

It should be pointed out that in a procedure such as this
one it is difficult to be certain that the generated instabili-
ties have a physical meaning. One way to increase the
level of confidence is to solve the problem (equations) by
more than one method. If the instabilities persist, then
they are more likely the property of the model itself and
not of the numerics used. We performed such a check in
our investigation, and we are certain that the instabilities
indeed belong to the model. Nonetheless, the question of
the physical reality of instabilities may still be raised.
There might exist some additional physical criterion not
contained in the model, which could preclude the develop-
ment of instabilities. A question like this can be resolved
only by experiment or by a more comprehensive theory.

The paper is organized in the following fashion. Sec-
tion 2 discusses the method of integration and stable solu-
tions. Section 3 deals with instabilities, and Section 4
presents a summary of our results.
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2. SOLUTION METHOD
We consider multigrating 4WM in photorefractive crystals
in standard geometry and standard notation. Two coun-
terpropagating pumps (Al and A2) are shining on the crys-
tal from the opposite sides, and a signal A4 is incident upon
the crystal from the side of the pump Al. Photorefractive
interaction of these waves in the crystal generates the PC
replica A3 of the signal. The process is described by a set
of four wave equations for the slowly varying envelopes of
the four components of the electric field oscillating at al-
lowed k vectors and at the degenerate frequency. There
are four ways in which the waves can mix and build dif-
fraction gratings in the crystal. Two of these contribute
to the PC wave generation and are commonly denoted the
transmission and the reflection geometry, respectively.9

The other two come from the two-wave mixing of the
pumps and of the probe with the PC. We assume here
that the transmission and reflection gratings contribute
equally and that the two-wave interaction between the
probe and the PC signal can be neglected. The rationale
behind such an approximation is provided in Ref. 10. The
relevant wave equations, deduced from their general form,
as given in Ref. 9, are

IA,' = g(ATA 4 - ARA 3) - yfA2J 2A,' (la)

IA2*' = g(ATA3 * - ARA 4 *) - yIA,12A2*, (lb)

IA 3 ' = -g(ATA 2 + AR*Al), (1c)

IA4*1 = -g(ATA,* + AR*A2*), (1d)

where I = , JAil2 is the total intensity, g and y are the
wave coupling coefficients (real numbers here), and AT =

AlA4 * + A2 *A3 and AR = A1A 3* + A2*A4 are the ampli-
tudes of the transmission and reflection gratings, respec-
tively. Our goal is to solve these equations accurately and
rapidly as a boundary-value problem and, at the same
time, to handle readily instabilities that may arise along
the way. The method of solution is as follows.

First, when Eqs. (1) are rewritten in terms of intensities
and phases, it is seen that the only phase variable to fig-
ure in the equations is the relative phase 4 = 4 + 43 -
02 - 01. Assuming exact phase conjugation (i.e., 4 = 0
or sr, depending on the setup) eliminates the phase equa-
tion, and the remaining set of intensity equations becomes

I1I' = 2I12 - 2g1(I4 - 13), (2a)

II2 = 2y211 + 2gI 2(I4 - I3), (2b)

113' = 2gI3(I + 12) + 4g(I,12 314)12 , (2c)

114' 2gI4(I, + I2) + 4g(Iu2I3I4)1/2. (2d)

Thus the energy transfer is of primary concern here.
More convenient variables for treatment of these equations
are the partial sums and differences of the intensities:
Ul = I2 + Il. V1 = 12 - Il, U2 = I4 + 13, and V2 = I4 - 13.
The new equations are given by

Iul' = 2gv1v2 + yfi2, (3a)

Ivl' = 2gulV2 ,

IU 2' = 2g(uIU2 + ff2),

IV 2' = 2gUMv2 ,

(3b)

(3c)

where now I = U1 + u2 . The functions fl2 = 4112 and
f2

2 = 4I3I4 obey similar equations,

(4a)

(4b)

IfA' = Yulf+u

If2' = 2g(uif2 + flu2),

and this fact can be used to facilitate the solution of
Eqs. (3). Equations (3b) and (4a) can be integrated in
terms of v2:

Vl = 2 + A, A = fV 2/v2 0)vI 2g, (5)

where A = Vld - V2d is a constant evaluated at z = d, d
being the thickness of the crystal. Knowledge of vl and f'
permits the evaluation of u1 = (fi2 + v, 2)1"2. In this man-
ner three variables are expressed in terms of v2. It re-
mains to do the same for u2 and f2 and then to solve an
equation for v2. The complications are that all these vari-
ables are coupled and that they obey boundary conditions
at different points.

A convenient way to resolve these problems is to intro-
duce a new variable w by the definitions

U2 = v2 cosh w, f2 = V2 sinh w (6)

and then to rescale all variables with respect to V2d, i.e., to
define u = U1/V2d, f = fI/v2d, and v = V2/V2d. The equa-
tions to be solved become

i' = 2guv, iw' = 2gf, (7)

where now i = u + v cosh w, u(v) = [(v + 3)2 + a2
vb]

1 2
,

and f(v) = avb/2 . The parameters 8 = A/v 2d and a =
fld/u2d, as will be seen below, are of special importance in
our solution procedure. Here b = y/g.

The system of Eqs. (7), apart from being integrable, has
another nice property: it presents an initial-value prob-
lem. The values of both unknown variables are known
on the z = d face of the crystal: d = 1, Wd = 0. In this
manner the boundary-value nature of the problem is
transferred to the parameter space.

The solution of the system of Eqs. (7) is given in
quadratures:

ln[v(z)] + | cosh[w(x)] dx = 2g(z - d)
JV [(X + )2 + a2xb 12

I1 a b/2-1
w (v) = f,[( + )2 + a 2Xb] 2 dx,

(8a)

(8b)

but the integrals indicated cannot be evaluated in closed
form for arbitrary b. With a good table of integrals many
special cases (b = 0,1, 2,...) can be written down explic-
itly. Furthermore, numerical evaluation or tabulation of
these integrals entails little difficulty. Even less trouble-
some numerically is to integrate Eqs. (7) directly on a
computer as an initial-value problem. In any case there
remains the problem of boundary values.

Let us denote the given values of intensities by Ilo = C,
and I40 = C4 on the z = 0 face of the crystal and by
I2d = C2 and 13d = 0 on the z = d face. The parameters a
and 6 are related to these by

a = 2(C2I1d)"/I4d, 8 = (C2 - Ild)/I4d - 1, (9)

(3d) where Ild and 14d = V2d are the missing boundary values at
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z = d.
missing
z = 0:

The same parameters can also be related to the
values I20 and I30 (or, equivalently, v0 and w0) at

a2 4C, CxX(C + C2) + VO a2 = 4C C2 x C + C2V b

x(C 2IO - C1
2
) _ ClVO _ C2 vOb (10)

C + C2VOb

where x = vo(cosh w0 + 1)/2C4 , which is also the inverse
of V2d.

The problem of boundary values is that a and are
given in terms of v0 and w0, and these can be evaluated
only after the correct values of a and are supplied to
Eqs. (7) or (8). Such problems, however, are conveniently
addressed by iteration procedures. Starting with some
arbitrary initial values a and 80, one substitutes these
into Eqs. (7) or (8), integrates the equations, and finds the
values of v0 and w0. From these the new values of al and
3, are calculated, and the procedure is repeated until the
desired accuracy is achieved. In this manner an iterative
map in the plane is defined, and the procedure actually
presents an evaluation of the fixed points of the map. It
is our experience that this procedure converges rapidly
and provides more accurate and stable solutions than
standard methods for boundary-value problems, such as
the shooting or relaxation algorithm. In addition, this
procedure is also well suited for multistable situations,
where other methods often fail.

There are four relevant control parameters in the prob-
lem: the wave mixing coefficients g and y (actually gd
and yd, but we keep d = 1 throughout) and the boundary
values C2 and C4 (the other pump is used as the intensity

Vlz)
W(z)

3.5
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- 0.5
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(a)

0.8 1.0

unit, and C, is fixed to be 1). The most important pa-
rameter is the coupling coefficient g. In general, we
found that the procedure is stable for negative g and arbi-
trary values of the other parameters. For positive g the
method is stable up to approximately g 2, and then it
loses stability. In the remainder of this section we dis-
play some of the stable solutions. Unstable solutions and
chaos are presented in Section 3.

The intensities are given in terms of the functions
v and w:

11 = I4d[U(V) - (v + )]/2, '2 I4d[u(v) + (v + 3)]/2,
(11a)

I3 = I4dv(cosh w - 1)/2, I4 = I4dv(cosh w + 1)/2,
(lib)

where u(v) is given above and I4d is the inverse of x appear-
ing in Eqs. (10). The intensity reflectivity of the crystal
is given by

R = (cosh wo - 1)/(cosh wo + 1). (12)

It is seen that the reflectivity is bounded by 1, as it should
be in this case of equal-strength multigrating operation.l

Another interesting consequence of equal-strength
multigrating operation is that it prevents double phase
conjugation. Double phase conjugation (DPC) is the wave
mixing process in which there are only two beams (A4 and
A2) incident upon the crystal, but there is a generation
of the conjugate beams in both propagation arms. As
such, DPC is the property of transmission gratings, since
these are the only gratings that can cause coherent energy
transfer from beam A2 into the conjugate of beam A4, and

2.0

11- 14

0 L
0 0.2 0.4 0.6

z (cm)
(b)

0.8 1.0

Fig. 1. (a) Functions u(z) and w(z) needed for specification of the intensities for parameters g = 2 (solid curves) and g = -2 (dashed
curves). The other parameters are y = -1, C2 = 1, and C4 = 0.6 (in units of the first pump intensity). (b) Corresponding intensities. It
is seen that negative g attains higher reflectivity.
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vice versa. DPC is not possible with reflective gratings.
Moreover, it is not possible even in the case of equal-
strength multiple gratings. This is evident if one in-
spects Eqs. (9) and (10) and the initial wave equations. It
is seen that the condition Cl = 0 implies that a = 0 and
consequently f = 0. This means that 1 = 0 everywhere,
and there is no DPC.

Figure 1 depicts the functions v(z) and w(z) for y = -1
and g = +2 (in units of inverse centimeters) and the cor-
responding intensities I, - I4. The behavior of v and w
as functions of z is simple (hence the choice of these vari-
ables). v is always positive and is an exponentiallike
function; it varies between 0 and 1 for positive g and is
larger than 1 for negative g. w is more like a logarithmic
function; it is negative for positive g and positive for nega-
tive g. For g = 0, v and w are constant (1 and 0, respec-
tively), indicating that there is no phase conjugation (14
remains constant and I3 = 0). In this case I1 and I2 expe-
rience two-wave mixing through the y term. In general,
the influence of the parameter y on phase conjugation is
not much pronounced.

Functions v and w are monotonic and, for reasonable
values of g, could be easily linearized. We will not go into
linearization here; however, we present an interesting
case that is almost entirely linear but the tiny nonlinear-
ity of which is essential for the explanation of the behavior
of intensities. This is the case of y = 0 and large and
positive g.

As we mentioned above, large and positive g leads to
instabilities in the system. Increasing g causes the sys-
tem to become multivalued, chaotic, or even unphysical
(with negative intensities). As far as we could establish,
there is only one exception to this behavior, and that is the
case when y = 0 and when boundary conditions obey a

certain relation. That is, if for arbitrary pumps Cl < C2
the initial signal is chosen as

C4 = C1(C2 - C1)/(C2 + C1), (13)

then for arbitrarily strong g the map in the a-8 plane falls
rapidly onto a fixed point:

a = 2C1 C2/(C2
2 - C1

2), a = 0, (14)

causing the appearance of a unique solution. An example
of such behavior is shown in Fig. 2. It should also be
noted that in this case the power flux to the left is bal-
anced by the power flux to the right, i.e., I, + 4 = I2 +

13. Furthermore, these P1 solutions are submerged into
a sea of unstable solutions. If the prescribed boundary
values are missed even slightly, the system goes to chaos
or becomes unphysical. This situation is displayed in
Fig. 3, where the first return map (an, a,+,) is shown for
g = 24, C2 = 6, and C4 = 0.7. Two chaotic segments in
the form of a parabola are visible, signifying that this is a
strongly dissipative case that can be described by a one-
dimensional map. A fuller account of the instabilities
arising in the system is provided in Section 3.

3. INSTABILITIES

Two interesting questions to be asked are whether the
map can become unstable and what happens when it does
become unstable. In other words, in addition to the fixed
points of the map (an, an) - (a,+,, 5n+1), one may be inter-
ested in the fixed points of the arbitrary composition
power of the same map. Such fixed points describe peri-
odic orbits and may reveal the nature of the transition to
chaos if there is one. As we mentioned in Section 2, the

5 l l 2.0 a l
Viz)
W (z 11A14

0 V 1.5-

12

-5 1.0

w/A

-10 0.5 14

13

-15 I X I I 0 I l | |
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

z(cm) z (cm)
(a) (b)

Fig. 2. (a) Functions v(z) and w(z) for the case y = 0 and strong g coupling. Here g = 10 cm-', while the boundary conditions are
C2 = 2 and C4 = 1/3. This choice leads to a unique fixed point (a = 4/3, 8 = 0) and an almost linear appearance of v and w. Note that v
nearly equals 0, while the slope of w, given by g(1 + C1/C2 ), equals 15. (b) Corresponding intensities. The slight nonlinearity visible in v
and w causes an extremely large change in the intensities.
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0.: 0.33 0.34 0.35 0.36 0.37

an
Fig. 3. First return map in a iterations for g = 24 cm-',
y = 0, C2 = 6, and C4 = 0.7. According to Eq. (13), for a unique
strong-coupling solution, C4 is supposed to be 5/7 0.7143, and
this small difference forces the appearance of (one-dimensional)
chaos in an, while An rapidly goes to 0.

4

3

2

1

0 0.2 0.4 0.6 0.8 1.0
z cm)

Fig. 4. Bistable P2 solution for g = 2.89, y = 1.5, C2 = 2, and
C4 = 0.6. On consecutive iterations the system jumps back and
forth from the high-reflectivity, strong-depletion state (dashed
curves) to the low-reflectivity, weak-depletion state (solid curves).
The inset shows the corresponding v and w functions.

procedure is stable for g < 2 approximately. For g > 2,
sooner or later it becomes unstable. The point where it
actually becomes unstable, as well as the form of instabili-
ties and their dynamics, depends strongly on the other
parameters. We will follow here in some detail the dy-
namics of the system when g and y are varied.

The most common instability observed is the P2 peri-
odic motion. In that case, on consecutive iterations the
system jumps back and forth from a high pump-depletion
state to a low depletion state. Consequently, the reflec-
tivity of the crystal blinks from a high value to a low value

indefinitely. This solution is shown in Fig. 4. As a next
complication, a P2 solution can coexist with a P1 solution.
Which solution is reached depends on the initial condi-
tions. A typical outlook of the domains of attraction in
the a-8 plane is given in Fig. 5.

Other instabilities observed include quasi-periodic mo-
tion and a period-doubling route to chaos. The situation is
presented by a phase diagram in Fig. 6. It is seen that,
for this set of boundary values (C2 = 3, C4 = 0.6), chaos can
be reached only in a band that separates P2 solutions from
the unphysical solutions. Unphysical solutions in this
context mean the solutions with negative a2. Negative a2

leads to the solutions with negative intensities, and the
basic premises of the model then fail. There is no genera-
tion of the PC beam under these conditions. Such solu-
tions must be discarded. It is an open question whether
some of the other multistable solutions may also be dis-
carded owing to some other physical constraint not so

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
a

Fig. 5. Domains of attraction for the coexisting P1 and P2
states for driving parameters g = 3.53 and y = -0.2, and
boundary conditions C2 = 3 and C4 = 0.6. As a * 0, the do-
mains start to intermingle, creating a fractal boundary. The
inset depicts in more detail the interweaving P1 and P2 domains
close to a = 0.

-5 -4 -3 -2 -1 0 1 2 3 4 r 5

Fig. 6. Phase diagram in the y-g parameter plane for C2 = 3
and C4 = 0.6. QP denotes the quasi-periodic region, and C denotes
the chaotic band in which period doubling to chaos takes place.
The region where a becomes negative is labeled UNPHYSICAL.
The chaotic band in the middle of the figure cuts across the P1
region, creating a domain where P1 and P2 solutions, or P1 and
P4 solutions, or P1 and chaotic solutions can coexist. Which at-
tractor is reached depends on the domains of attraction. The
small circle near y = 0 denotes the P1 and P2 coexistence point
from Fig. 5. The dashed arrows denote directions of codimen-
sion 1 bifurcation diagrams presented in Figs. 11, 13, and 16.

I I I

I I I

0L

I

Beli6 et al.

.32



1728 J. Opt. Soc. Am. B/Vol. 8, No. 8/August 1991

0.11 0.12 0.13 0.14
a,

(a)

W *

- 0.15 - 0.14 -0.13 - 0.12
6n

n1

0.20 -

0.10,

0-
0 0.10

(c)

6n+1 ~
-0.10 

-0.20

. *.-.
-. 3 0aw

-0.30

0.20
an

-0.22
6 n41

-0.24

-0.26

-0.28 -
-0.28

6 n+1

- 0.22

-0.24 

- 0.26

- 0.20

- U.Ld -
- 0.20 . ....

-010 6n

-0.26 -024

(e)

Ir

,-7

I8 - 0.26 - 0.24 - 0.22 ,

b) Id) (f)
Fig. 7. Development of instabilities for y = -3, C2 = 3, and C4 = 0.6 as g is varied. (a) and (b) Represent falling onto a limit cycle for
g = 2.3, (c) and (d) exemplify motion on a torus at g = 2.9, and (e) is the beginning of a period-doubling cascade. The small filled circles
stand for period 16 at g = 3.3865, and the open circles represent the period-2 cycle. (f) Four-piece strange attractor that develops for
g = 3.3869.
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readily apparent. In what follows we describe what hap- motion on a torus after a Ho
pens with the system for some special cases from Fig. 6. the system. With a further

Figure 7 depicts the development of instabilities as g is dissolve (collapse) back onto

varied for y = -3. This case corresponds to the dashed which then starts to bifui
line at the left of Fig. 6. Figures 7(a) and 7(b) show spiral- period-16 cycle at g = 3.381
ing into a fixed point (limit cycle) in the Poincar6 sections four-piece strange attractor
(return maps) of a and 3, while Figs. 7(c) and 7(d) display To ascertain that the visiblej
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Its fractal structure is evident.

pf bifurcation has occurred in
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35, and Fig. 7(f) illustrates a
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A further increase in the parameter brings different
pieces of the attractor together, and a one-piece strange
attractor is formed. However, owing to the implicit and
noninvertible nature of the map, it is difficult to draw
stable and unstable manifolds of different fixed points.
Figure 9 shows the attractor in the a-6 phase plane for

I7-

Li
-J

U-
LU

0.17

2.4 2.6 2.8 3.0 3.2 3.4
9

Fig. 11. Same development as in Fig. 7 but viewed as a bifurca-
tion diagram of the intensity reflectivity.

1.0

Rn+1

0.8

018
a

(b)
Fig. 9. Strange attractor in the plane of a-6 parameters. The
inset in (a) is enlarged in (b) in order to demonstrate the fractal
structure of the set.
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Fig. 10. Correlation dimension of the attractor from Fig. 9, ob-
tained from embedding of the attractor in two-dimensional and
three-dimensional Euclidean space.

segments in the plane, in Fig. 8 we provide a closer look at
one of the pieces. The fractal structure of these sets is
apparent.
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(b)
Fig. 12. (a) Same attractor as in Fig. 9 but viewed as a return
map on the reflectivity sequence R_. The small window (opened
at approximately the same place as in Fig. 9) is enlarged in (b).
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Fig. 13. Bifurcation diagram for positive y (y = 3). No quasi-
periodic behavior is visible.
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Fig. 14. Quasi-periodic instability of the intensity reflectivity of
the crystal as a function of the pump intensity C2 for y = -3 and
g = 2.4.

Figure 9 shows the attractor in the a-8 phase plane for
g = 3.505, = -1, C2 = 3, and C4 = 0.6. We have mea-
sured its correlation dimension, using embedding tech-
niques, and found it to be D2 1.1 at this point in the
parameter space (Fig. 10).

Figure 11 depicts the same development as Fig. 7 but in
terms of the intensity reflectivity R = 130/C4 of the crys-
tal. It makes little difference whether one looks at the
chaos in the variables a and 8, or Ild and I4d, or I20 and I30.
The same qualitative behavior is observed. For example,
the same strange attractor as in Fig. 9 is shown in Fig. 12,
this time as a return map on the reflectivity. It is seen
that roughly between g 2.35 and g 3.12 in Fig. 11 a
quasi-periodic egg is formed, with many commensurate
windows visible. The chaos, however, is not reached
through quasi-periodicity, and at the end of the interval a
unique, period-1 solution is recovered. This fixed point
starts to bifurcate at approximately g _ 3.22, and after a
cascade of pitchfork bifurcations chaos is reached at
g _ 3.39. Thus, through a repeated loss of stability of the
fixed points of various powers of the map, at a certain
value of the wave coupling an aperiodic state is reached,
where no stable reflectivity exists.

A different behavior is observed for positive y. In
Fig. 13 the development of the reflectivity is followed for

y = 3. This situation is shown by the small dashed line
on the right of Fig. 6 above. Now no quasi-periodic egg
appears, and the system proceeds to chaos through period
doubling starting from g 3.56. No structure (such as
periodic windows) is visible in the chaotic region, and
chaos actually terminates when the system enters an un-
physical region of negative a2 .

Having a number of control parameters at our disposal,
we can monitor the behavior of the system along different
parameter axes. For example, Fig. 14 shows the behavior
of the system as the input intensity of the second pump is
varied while y = -3 and g = 2.4 are kept fixed. This is
the quasi-periodic region from Fig. 11. Here the quasi-
periodic behavior is displayed in more detail. An interest-
ing new detail is the appearance of primary bubbles in
quasi-periodic windows. The system starts to bifurcate,
but then, owing to some symmetry constraints (not explic-
itly apparent in our implicit map), it reverts to simple pe-
riodic behavior. Closer to the chaotic region (Fig. 15;
g = 3, y = -0.5), this behavior acquires the characteris-
tics of merging bifurcations, or inverse period doublings.

A similar behavior is observed if the changes in the re-
flectivity are followed with the variations in y (Fig. 16;
g = 3.53, C2 = 3). This situation is shown by the hori-
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Fig. 15. Bifurcation diagram of the reflectivity with the pump
intensity C2 as the control parameter. The other parameters are
y = -5 andg = 3.
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Fig. 16. Same as Fig. 15, but here the control parameter is .
The other parameters are g = 3.53 and C2 = 3.
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zontal dashed line in Fig. 6. Generally, the phase dia-
gram shows that the system is becoming more unstable as
g is increasing and y is decreasing (increasing) if it is nega-
tive (positive). Moreover, in the region of large g's (strong-
coupling limit), a boundary is eventually approached,
where unphysical solutions appear. Chaos is found in the
band that separates periodic from unphysical solutions.

4. SUMMARY

In summary, we have presented a novel procedure for the
treatment of stable and unstable outputs in optical phase
conjugation. We analyze unstable, multivalued solutions
that arise in standard 4WM geometry of photorefractive
phase conjugation, using standard methods of nonlinear
dynamics. Multigrating operation is assumed, and pump
depletion is allowed. The initial boundary-value problem
of slowly varying wave equations is transformed into an
initial-value problem, which is solved in quadratures. In
order to match boundary conditions, we construct an itera-
tive map in the parameter space and analyze its stability.
It is found that, as a function of the most important driv-
ing parameter g, the map is stable for g < 0 (which is the
experimentally more preferred region), providing a unique
solution to the original wave equations.

However, for g > 0 and increasing, invariably a region
of instabilities is approached, where the map performs
quasi-periodic motion, or becomes chaotic following a Fei-
genbaum period-doubling route to chaos. The chaotic re-
gion is rather narrow and featureless, and it ends in an
unphysical region of negative intensities, where the model
is inappropriate. The only exception to this behavior, as
far as we could establish, is the set of solutions for y = 0
with equal left and right fluxes. This set satisfies special
boundary conditions and persists amid chaotic or unphysi-
cal solutions for arbitrarily large g.

It should be stressed at the end that the whole subject of
chaos in OPC, or for that matter in any other optical sys-
tem, is not firmly established if it arises in the analysis of
steady-state equations. Looking at a long-time behavior
in the systems in which temporal derivatives are neglected
from the beginning could lead to spurious solutions or
chaotic scenarios that are not observed in real life. This
situation is similar to computational fluid dynamics, in
which solving stationary potential equations leads some-

times to multiple solutions that are not found in Euler or
Navier-Stokes equations." In other words, the inclusion
of temporal derivatives may lead to a completely different
long-time behavior. One should exert great caution when
dealing with multiple solutions in steady-state systems,
since these may be an exclusive property of the model or
approximation used or merely present a numerical insta-
bility. The possibly problematic physical content of insta-
bilities and chaos obtained by steady-state analyses has
received inadequate attention by researchers, yet such ac-
counts are abundant in the literature. In our case we
checked by an alternative method (brute-force shooting)
that the instabilities belong to the wave equations at hand,
but how real they are can be resolved only by experiment.
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