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The spatiotemporal dynamics of two counterpropagating beams in a photorefractive crystal with nonlocal and
sluggish response is investigated in the longitudinal and one transverse dimension. A static external electric
field is applied to the crystal to control the coupling strength of the two-wave mixing process. A nonautono-
mous linear stability analysis is performed that takes a nonconstant modulation depth into account. The on-
set of pattern formation for arbitrary coupling constants and pump ratios and the influence of linear absorption
are discussed. Above the threshold predicted by stability analysis, running transverse waves appear in the
optical near field and wandering spots appear in the corresponding far field. A nonlinear eigenmode analysis
reveals the running transverse waves as secondary instabilities. © 1998 Optical Society of America
[S0740-3224(98)00407-X]
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1. INTRODUCTION
Spatiotemporal pattern formation through two counter-
propagating optical beams in a nonlinear medium has
been observed experimentally and investigated theoreti-
cally in a variety of systems: Kerr media,1–4 atomic
vapors,5 and Brillouin scattering.6 The pump beams be-
came unstable against the formation of sideband beams,
which were observed in the optical far field as spots or ar-
rays of spots.

In recent years transverse instabilities and transverse
pattern formation have also attracted considerable inter-
est in the field of photorefractive (PR) media. First ex-
periments were performed with a feedback mirror,7–9 and
rotating hexagonal spots in the far field were observed.
Honda and Banerjee were able to give a theoretical expla-
nation of their measurements.10 They emphasized that
though hexagonal patterns are formed through reflection
gratings of the pump beams, transmission gratings be-
tween pump beams and their own sideband beams are of
importance.

Some PR crystals, e.g., LiNbO3, exhibit no phase shift
between the intensity variation and the variation in the
refractive index. The onset of pattern formation owing to
this local medium response was thoroughly studied by
Sturman and Chernykh.11,12 Saffman et al.13,14 consid-
ered both the local and the nonlocal responses of PR me-
dia. The nonlocal response occurs for BaTiO3 and
KNbO3, for example, and leads to an energy exchange be-
tween the pump beams. Thus one has to deal with a non-
autonomous stability problem when predicting the onset
of pattern formation in these types of PR crystal. Saff-
man et al. considered interaction through both transmis-
0740-3224/98/072070-09$15.00 ©
sion and reflection gratings but in the latter case consid-
ered only constant internal pump ratio to obtain an
analytical threshold condition.

Theoretical investigations with nonlocal PR response
are impeded by the fact that transverse structures occur
through reflection gratings, a situation that is known to
cause great difficulties for both analytical and numerical
treatment. Theoretical predictions by means of linear
stability analyses10,14 offered improved understanding of
the origin of the structures but could not reveal the spa-
tiotemporal dynamics that occurs above the primary in-
stability threshold.

In this paper we present theoretical and numerical in-
vestigations of spatiotemporal structures that are due to
counterpropagation of two pump beams in a PR crystal
with nonlocal and sluggish medium response by interac-
tion through reflection gratings. Extending the previous
research, we perform linear stability analysis for the non-
autonomous system that results from the inclusion of
nonconstant modulation depth.

2. MODEL EQUATIONS
The two-wave mixing process is described by the propa-
gation of two beams through a nonlinear PR medium and
their interaction with the medium. Below we consider
the standard PR two-wave mixing equations in paraxial
approximation of the form15,16

]zA1 1 if]x
2A1 1 a A1 5 2QA2 , (1a)

2]zA2 1 if]x
2A2 1 a A2 5 Q* A1 . (1b)
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A1,2(x, z) are the slowly varying envelopes of the beams,
f 5 L/(2k0w0

2) is a measure of the magnitude of diffrac-
tion and is proportional to the inverse Fresnel number,
where L is the length of the crystal, and k0 denotes the
wave vector within the crystal in the longitudinal direc-
tion z. Transverse coordinate x is scaled to beam radius
w0 . We consider only one transverse dimension. Pa-
rameter a is the coefficient of linear absorption. The
temporal evolution of the complex amplitude Q of the re-
flection grating in the crystal is approximated by a relax-
ation equation of the form17

t] tQ 1 hQ 5 G
A1A2*

uA1u2 1 uA2u2 , (2)

where t is the relaxation-time constant of the grating de-
scribing the sluggish behavior of PR media, h is a param-
eter that depends on the internal electric fields of the
crystal, and G is the PR coupling constant. To be able to
control the coupling strength of the crystal we apply a
static external electric field E0 5 V/L to the crystal in the
direction of the grating wave vector. In this case we
have, according to Kukhtarev et al.,17

h 5
Ed 1 Eq 1 iE0

EM 1 Ed 1 iE0
, (3)

G 5 G0S 1 1
Eq

Ed
D Ed 1 iE0

EM 1 Ed 1 iE0
, (4)

with G0 being the steady-state coupling strength without
external field. Ed 5 1 kV/cm, Eq 5 5 kV/cm, and EM
5 100 kV/cm are the values of the internal fields that de-
scribe the electronic processes in a BaTiO3 crystal.18

Note that E0 effectively renders both coupling constant G
and relaxation-time constant t complex. Hence E0 exerts
a profound influence on the process of wave mixing. By
breaking the frequency degeneracy it allows for the
buildup of running gratings and the appearance of run-
ning transverse waves.

All explicit spatial dependences in Q are neglected. As
a consequence the temporal evolution in Eq. (2) is adia-
batically separated from the spatial variations in Eqs. (1).
In reflection geometry we are dealing with two-point
boundary conditions at the opposite faces of the crystal
(Fig. 1). Boundary conditions are chosen consistently
with the common experimental conditions to be Gaussian
beams in combination with open lateral sides (no reflect-
ing or periodic boundaries):

A1~x, z 5 0 ! 5 C1 exp~2x2/w0
2!,

A2~x, z 5 L ! 5 C2 exp~2x2/w0
2!. (5)
Inasmuch as only the input intensity ratio r0
5 I1(0)/I2(L) of the beams is a relevant parameter, we
can put C1 5 1.0 and C2 5 r0

21/2.

3. LINEAR STABILITY OF TRANSVERSE
MODES
The primary instability threshold for the onset of trans-
verse patterns is determined by the linear instability of
the steady-state plane-wave solutions. These steady-
state plane-wave solutions ( f 5 0 and ] tQ 5 0) without
absorption were derived by Yeh19; those including absorp-
tion, by Belić.20 They are the spatially homogeneous
fixed-point solutions of the system.

The steady-state field amplitudes are denoted by
A1

0(z) and A2
0(z), and the corresponding amplitude of

the refractive-index grating is denoted by Q0(z). The
stability analysis proceeds with a small perturbation of
the wave and grating amplitudes:

A1~z, x, t ! 5 A1
0~z !@1 1 ea~z, x, t !#, (6a)

A2~z, x, t ! 5 A2
0~z !@1 1 eb~z, x, t !#, (6b)

Q~z, x, t ! 5 Q0~z !@1 1 eq~z, x, t !#. (6c)

After Eqs. (6) are substituted into Eqs. (1) and (2) the per-
turbations a, b, and q will be expanded in the transverse
Fourier (x → K) and in the temporal Laplace (t → l)
space, yielding an algebraic expression for q. After
elimination of q, the linearized equations are cast into a
matrix form:

]za 5 A~z, K, l!a~z, K, l!. (7)

The vector a 5 (a1 , a2 , b1 , b2)T contains the Fourier–
Laplace components of the perturbations, where a6 and
b6 pertain to 6uKu. When we choose an appropriate ba-
sis through a transformation U, the physics that is in-
volved in linear stability analysis becomes more obvious.
The perturbation matrix reads as

Fig. 1. Two-wave mixing configuration in reflection geometry
with an externally applied voltage V: A1 , A2 , pump beams; Q,
grating amplitude. z indicates the direction of propagation, and
x is the transverse dimension.
A 5 U21F m0
2g 1 ~1 2 m0

2!g~l! 2fK 2 0 2sA1 2 m0
2h~l!

m0
2b 1 ~1 2 m0

2!h~l! 1 fK 2 0 0 sA1 2 m0
2g~l!

sA1 2 m0
2g~l! 0 0 2h~l! 2 fK 2

sA1 2 m0
2h~l! 0 fK 2 g~l!

GU . (8)
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The temporal variations in Q that are due to the slug-
gish PR response, which enter through q(l), result in the
two functions

g~l! 5
l

2 S Gete

lte 1 1
1

Ge* te*

lte* 1 1 D , (9)

h~l! 5
l

2i S Gete

lte 1 1
2

Ge* te*

lte* 1 1 D . (10)

g and b are the real and the imaginary parts of the effec-
tive coupling constant Ge 5 G/h; they correspond to the
intensity and phase coupling constants, respectively. te
5 t/h is the effective complex PR time constant, and s
5 sign@I2

0(z) 2 I1
0(z)#.

We can see from this form of stability matrix that the
steady-state fixed-point solution contributes only through
its modulation depth:

m0~z ! 5
2@I1

0~z !I2
0~z !#1/2

I1
0~z ! 1 I2

0~z !
(11)

to stability. Moreover, linear absorption affects stability
only through changes in the modulation depth depen-
dence of the steady-state fixed point and does not occur in
A explicitly.

Owing to energy exchange and linear absorption, non-
autonomous equation (7) cannot in general be solved ana-
lytically. Nonetheless, its formal solution is given by
a(L) 5 F (L)a(0), where F (z) is the linear flow matrix.
Hence the problem of linear stability is solved if F (L) is
known. Separating A into Tr A and its trace-free part,
we can calculate F (L) from

F~L ! 5 expF E
0

L

Tr A~s !dsG 3 )
z50

L

D ~z !. (12)

Fig. 2. (a) Threshold curves of the applied electric field and (b)
threshold frequency of the grating amplitude, as functions of the
transverse wave vector K. The coupling constant is G0 L
5 2.0, and the pump ratio r0 5 20.09. sFP, uFP, regions of
stable and unstable fixed points, respectively; Hopf, the type of
bifurcation as the threshold curve is crossed in the direction of
the arrow.
The trace-free part is obtained through a repeated mul-
tiplication of infinitesimal rotation matrices D (z) taken
at subsequent points z in the crystal. These matrix prod-
ucts have to be evaluated numerically.

Taking into account two-point boundary conditions, we
convert F (L) into a scattering matrix S and obtain the fi-
nal form of the solution:

a~zout! 5 S ~K, l!a~z in!, (13)

where zout and z in denote the output and the input faces of
the crystal for the respective beams. The poles of the
scattering matrix determine the properties of an absolute
instability and lead to the threshold condition.

Under the special constraint for the input intensity ra-
tio r0 , ln r0 5 g L, which implies a ratio of beam intensi-
ties inside the crystal r(z) 5 I1

0(z)/I2
0(z) [ 1 and a

modulation depth m0(z) [ 1, Eq. (12) reduces to F (L)
5 exp(AL). Then we obtain the well-known analytical
expression for the threshold condition21:

coshS g 2 g
2 D 1 cos~x1!cos~x2! 1 p sinc~x1!sinc~x2! 5 0,

(14)

where x1
2 5 fK 2( fK 2 1 b) 2 g2/4, x2

2(l) 5 fK 2( fK 2

1 h) 2 g2/4, and p(l) 5 fK 2@ fK 2 1 ( b 1 h)/2)]
1 bh/2 1 gg/4.

The stability analysis of a spatially extended system re-
sults in growth rates s 5 R(l) for the transverse modes
K together with their oscillation frequencies V 5 J(l).
The instability threshold is inferred from the lowest-lying
branches of the stability condition of the most unstable
mode: smax(K; G0 , E0 , r0) 5 0. The polarity of the exter-
nal field exerts a profound influence on the stability be-
havior of the medium. In the case of positive polarity
(E0 . 0) the threshold condition yields the so-called
high-K instability.21 In our numerical simulations there
is an indication that high-K instabilities indeed exist.

In the case of E0 , 0 the instability curves are dis-
played in Fig. 2 for a constant input pump ratio r0 with-
out any constraint on internal pump ratios r(z), as in Ref.
21. As long as uE0u is smaller than a critical value, there
is a region of stability for any transverse mode. At a
critical value E0

c ' 21.7Ed a finite band of transverse
modes around a critical mode fKc

2 ' 3.6w0
22 is predicted

to become unstable through a Hopf bifurcation with a
characteristic oscillation frequency Vct ' 0.031. The re-
gion where the balloon is displayed corresponds to a static
instability. Its threshold, though, is always higher than
that of the dynamic instability and therefore is not ob-
servable. In addition, the slow medium response leads to
plane-wave instabilities (fK 2 5 0) whose threshold is
much higher (E0

c ' 211.3Ed) than that for the modal in-
stability.

The solution of the nonautonomous stability problem
enables us to discuss the onset of pattern formation for
arbitrary parameter values of coupling strength G0 and
input pump ratio r0 . In Fig. 3 the primary instability
threshold is displayed as a function of coupling strength
G0 . The threshold value of E0 becomes the lowest for
high G0 . The minimum threshold, in the sense that both
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Fig. 3. (a) Bifurcation diagram of the primary instability
threshold (solid curve), displaying the critical values of E0 , 0
as a function of G0L for fixed r0 5 20.09. Dashed curve, con-
stant values of the intensity coupling strength gL 5 1.0, 2.0, 3.0,
4.0, 5.0 (left to right); sFP, and uFP1sLC, regions of stable and
unstable fixed points and stable limit cycle, respectively. (b) Os-
cillation frequency, (c) spatial frequency. Diamonds, points
where the threshold values can be obtained analytically.

Fig. 4. (a) Bifurcation diagram of the primary instability
threshold, displaying the critical values of E0 , 0 as a function
of r0 for fixed G0 L 5 2.0. (b) Oscillation frequency, (c) spatial
frequency. Diamonds, points where the threshold values can be
obtained analytically.
E0
c and G0

c simultaneously reach a minimum value,
which is the case when the threshold curve in Fig. 3(a)
has slope 21, is attained for G0 L ' 2.4 and indeed coin-
cides with the maximal value of the modulation depth, in
accordance with the presumption in Ref. 14. The critical
value of E0 increases for small coupling strengths. For
G0 L , 0.4 the fixed point is stable for any applied field
strength. Figure 4 displays the dependence of the insta-
bility threshold on the pump ratio. Here, for a constant
value of G0 , the threshold again reaches its minimum for
that value of r0 for which the modulation depth attains its
maximum value of 1. For equal pump intensities the
fixed point is stable for any applied field strength.

The type of bifurcation remains the same, regardless of
whether we assume a z-dependent modulation depth.
We always find a dynamic instability through a Hopf bi-
furcation. An applied field always forms a running grat-
ing, which, together with the light fields, displays self-
sustained oscillations above threshold. We do not find
instabilities of this type without an externally applied
field.

4. SPATIOTEMPORAL DYNAMICS
For a negative polarity of E0 our linear stability analysis
predicts the spontaneous destabilization of the homoge-
neous fixed-point solution above a primary threshold
value of the applied electric field. To see which spa-
tiotemporal structures arise, we investigate the counter-
propagating two-wave mixing process by numerical simu-
lations of the full set of coupled nonlinear wave equations
(1) and (2). We use the modified beam propagation
method,15 which we have extended to reflection gratings
by means of a relaxation method, to satisfy the two-point
boundary conditions. In this and the subsequent sec-
tions we keep the following parameters constant:

G0L 5 2.0, r0 5 20.09, f 5 0.025.

The strength of external field E0 is our bifurcation param-
eter.

In our numerical simulations we find the threshold
field strength to be somewhat higher (E0

c ' 21.9Ed)
than predicted (E0

c ' 21.7Ed), because the transverse
modes were considered to be infinitely extended when the
stability analysis was performed, whereas we deal with fi-
nite Gaussian beam profiles in our simulations. This dif-
ference may lead to discrepancies, but the approximation
is good as long as the wavelength of modulation remains
small enough compared with the beam waist. In Fig. 5
the transverse intensity and phase profiles of the
backward-propagating beam at the output face of the
crystal are shown at two subsequent times that are half
an oscillation cycle apart, when the beam center goes
through either its maximal or its minimal intensity.

Below threshold [Figs. 5(a) and 5(c)] we find the fixed
point to be an attractor with a smooth Gaussian beam
profile. The phase is curved to the edges of the trans-
verse profile, indicating the self-focusing behavior as a
consequence of the Gaussian beam shape in the intensity.
Slightly above threshold [Figs. 5(b) and 5(d)] a spontane-
ous modulation of the beam profile and the phase distri-
bution appears. This modulation oscillates in time, and
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we find a limit cycle attractor. Its frequency V as well as
the spatial frequency K of the transverse modulation
agrees well with the values predicted by stability analy-
sis.

The transverse modulation of beam intensities I1 and
I2 plotted as a function of time [Figs. 6(a) and 6(b)] dis-
plays a moving pattern. The transverse modulations
seem to originate in the beam center, and left-going and
right-going modulations run across the beam profile until

Fig. 5. Transverse intensity and phase profiles of beam A2
when it leaves the crystal at z 5 0: (a), (c) below threshold for
E0 5 21.8Ed ; (b), (d) above threshold for E0 5 22.0Ed at times
t and t 1 T/2.

Fig. 6. Spatiotemporal dynamics above the instability threshold
at E0 5 22.0Ed . Running transverse waves in the near field
for (a) I1 and (b) I2 , and (c), (d) wandering spots in the far field;
the pump beams have been subtracted. G0 L 5 2.0, f 5 0.025,
r0 5 20.09, aL 5 0.
they disappear at the edges. Such spatiotemporal pat-
terns are known as running transverse waves.22 The na-
ture of the running transverse waves is clarified in Sub-
section 4.C below by means of an eigenmode analysis.
We observe only symmetric structures with respect to the
beam center. Even for asymmetric initial conditions in
the refractive-index grating the attractor is symmetric af-
ter the long transients have died away.

The running transverse wave pattern occurs in the op-
tical near field. Here it possesses a characteristic spatial
length scale given by the critical wavelength Lc
5 2p/Kc of ;47 mm in our case. This type of pattern is
analogous to the well-known roll pattern in one trans-
verse dimension. In the far field these transverse pat-
terns appear as two wandering spots [Figs. 6(c) and 6(d)]
under a characteristic angle uc ' Kc /k0 of ;0.31 deg
with respect to the direction of propagation. We have as-
sumed the light of a He–Ne laser and a beam radius of
;90 mm. They emerge as a pair of faint spots, become
brighter while they move inward, and finally fade away,
and another pair already begins to emerge. These spots
are the sideband beams that correspond to the transverse
wave vectors 1K and 2K. The perturbation amplitudes
a1 , b2 , etc. of the linear analysis grow to the finite am-
plitudes of the spots in the nonlinear system.

A. Linear Absorption
Photorefractive crystals exhibit strong absorption of light.
There are two types of absorption present. The coherent
absorption of photons produces free charge carriers for
the PR effect, and a photochromic absorption grating is
formed.23 Incoherent absorption phenomena are de-
scribed by means of linear damping of the light fields,
which we are considering here. In Fig. 7 we compare the
threshold predicted by stability analysis with our numeri-
cal simulations. We find that the threshold is raised and
the frequency of the limit cycle oscillation is lowered by
linear absorption effective along the propagation direc-
tion. The spatial frequency of the transverse mode is
predicted to increase with stronger absorption, but in the
numerical simulations we find that it remains almost the
same.

The oscillation frequency decreases more in the simu-
lations than expected from linear stability analysis. In
the numerical simulations we find a somewhat higher
threshold, as we mentioned in Section 3. Therefore we
look for a critical oscillation frequency of the most un-
stable transverse mode given by stability analysis for
critical values of E0 ;10% above the actual threshold.
Here linear stability analysis still provides a good correc-
tion, indicated by the dashed curve in Fig. 7(b). So the
temporal behavior is slowed when the onset of pattern
formation is shifted to higher field strength. Above
threshold the oscillation frequency increases with in-
creasing strength of the external field (Fig. 8). The spa-
tiotemporal structure of the running transverse wave,
however, is not changed by linear absorption.

B. Focusing Effects
In Section 3 we discussed the influence of the polarity of
the externally applied field on the stability behavior. We
report here on an effect of focusing that is biased by the
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transverse modulational instability in this wave mixing
geometry. Above the instability threshold transverse
modulations occur in the beam profile. If we now further
increase the strength of the external field, the amplitudes
of the modulation increase [Fig. 9(a)]. For I1 two regions
of high intensity appear at the edges of the beam profile,
whereas the center of beam I2 steepens noticeably [Fig.
9(c)].

Below threshold the slowly varying envelope of Q, and
hence the change in the refractive index, is homogeneous
in the transverse direction. When the threshold is
crossed a transverse inhomogeneity in Q emerges, caused
by the modulation of beam profiles. Slightly above
threshold the transverse modulation of the grating ampli-

Fig. 7. (a) Bifurcation diagram of the primary instability
threshold (solid curve) displaying the critical values of E0 , 0 as
a function of aL for fixed G0L 5 2.0 and r0 5 20.09. (b) Oscil-
lation frequency, (c) spatial frequency. Asterisks, results ob-
tained from numerical simulations. For the spatial frequency
one obtains different values for I1 (L) and I2 (h). The dashed
curve in (b) indicates the correction for the frequency given by
stability analysis.

Fig. 8. Frequency behavior above threshold for different values
of aL: (* ) 0.0, (n) 0.3, (h) 0.5, obtained from numerical simu-
lations. Solid curves, cubic splines through the data points;
dashed curve, onset of pattern formation given by stability analy-
sis.
tude becomes visible [Fig. 10(a)]. The importance of this
effect was realized by Honda and Banerjee10 when they
pointed out that one should not neglect the interference
between each of the pumps and its own sideband beams
in performing stability analysis. The bright stripe struc-
ture seen in the middle of the distribution is the source of
the modulational structure in the refractive index, indi-
cating the focusing–defocusing tendency of the beams.
The additional structure seen in the wings of the distri-

Fig. 9. Transverse intensity profiles for E0 /Ed 5 (a) 22.2, (b)
22.3, (c) 22.6 at times t and t 1 T/2.

Fig. 10. Spatial distribution of the slowly varying envelope of
uQu within the crystal at one instant of time for E0 /Ed 5 (a)
22.0, (b) 22.6.
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bution is caused by failure to take into account the dark
intensity Id . Adding Id of the order of 1024 to the total
intensity in Eq. (2) will suppress these artificial bright
spots. For a field strength of E0 5 22.6Ed a V-type
structure in Q occurs [Fig. 10(b)] and exerts a strong in-
fluence on the wave mixing process in the crystal. The
backward beam (I2) focuses toward the beam center,
whereas the forward beam (I1) defocuses into the two
sides of the V-shaped region.

The mechanism is the same as for all self-focusing pro-
cesses; i.e., the beams become focused into regions of high
refractive index. However, it is also different in the
sense that it requires a transverse modulational instabil-
ity to happen. This focusing effect is a dynamic process,
because the index grating is a running grating and the
spatial distribution of Q oscillates around the mean
V-shaped structure.

C. Eigenmode Analysis
To characterize quantitatively the spatial structures and
their dynamics, we apply a singular-value decomposition,
also known as the Karhunen–Loève decomposition,24,25 to
the spatiotemporal patterns. Singular-value decomposi-
tion was originally developed for the task of pattern rec-
ognition but has generally proved to be a powerful tool for
determining and distinguishing different spatiotemporal
degrees of freedom, which are often hard to detect by vi-
sual inspection. By computing and analyzing the basic
eigenmodes we obtain a better insight into the mecha-
nisms that lead to complex spatiotemporal dynamics.

The time-varying part of the intensity pattern
dI(x, t) 5 I(x, t) 2 ^I(x, t)&T is decomposed according
to Karhunen and Loève into an orthogonal set of eigen-
modes p (i)(x) and their time-dependent expansion coeffi-
cients a (i)(t):

dI~x, t ! 5 (
i

a ~i !~t !p ~i !~x !. (15)

The eigenvalues l (i) determine the probability of occur-
rence of the corresponding eigenvectors p (i) in the inten-
sity pattern I(x, t). Figure 11 displays the spectra of the
normalized eigenvalues l (i) for the intensity patterns of
the running transverse waves slightly and far above
threshold. The eigenvalues decrease rapidly with in-
creasing mode index i. Higher eigenmodes become im-
portant for the pattern farther away from threshold.
Note that, as far as the order of magnitude is concerned,
the eigenvalues are arranged in pairs. The sum of the
two largest eigenmodes contains more than 97% of the in-
formation of the original spatiotemporal structure, and
higher eigenmodes simply contribute small corrections.

In Fig. 12 the transverse dependence of the two domi-
nating eigenmodes, the time series of the expansion coef-
ficients, and the resulting spatiotemporal substructures
dI (i)(x, t) are shown. Such a substructure by itself rep-
resents a standing transverse wave [Figs. 12(a) and
12(d)]. The first eigenmode, p (1) [Fig. 12(b)], consists of a
finite wave packet with a basic spatial frequency K0 , and
its expansion coefficient [Fig. 12(c)] displays a temporal
frequency V0 . The second eigenmode, p (2) [Fig. 12(e)],
has a more complex spatial structure, though its expan-
sion coefficient [Fig. 12(f )] possesses the same temporal
frequency V0 . The Fourier spectra of the eigenmodes
(Fig. 13) reveal that the second eigenmode contains two
basic spatial frequencies, K1 5 K0 2 DK and K2 5 K0
1 DK, that are separated by a frequency gap of 2DK
around K0 . As the eigenmodes are finite wave packets,
the spectra themselves are broadened. The transverse

Fig. 11. Spectra of normalized eigenvalues l (i) (in percent) for
the intensity patterns of (a) I1 and (b) I2 with (d) E0 /Ed
5 22.0 and (h) E0 /Ed 5 22.6.

Fig. 12. (a), (d) Spatiotemporal substructures: the two domi-
nating eigenmodes (b) with l (1) ' 80.22% and (e) with l (2)

' 19.39% and (c), (f ) their time-dependent expansion coeffi-
cients of the running transverse wave of Fig. 6(b).
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spatial structure and the temporal evolution of these two
eigenmodes are shifted by p/2 relative to each other.
This phase shift allows the two standing-wave patterns to
combine into a running transverse wave.

K0 agrees well with the critical frequency Kc predicted
by linear stability analysis and thus represents the trans-
verse modulation that is due to the spontaneous destabi-
lization of the homogeneous fixed point. The occurrence
of DK indicates a secondary bifurcation immediately after
the primary bifurcation, which we presume originates
from the finite transverse Gaussian beam profile. DK
preserves the transverse symmetry with respect to the
beam center and is related to the simultaneous occur-
rence of a right-going and a left-going transverse wave.

In Fig. 14 the basic spatial frequencies K0 and DK are
shown with respect to the bifurcation parameter E0 . Be-
cause of the dynamic focusing effects described in Subsec-
tion 4.B, K0 and DK are smaller for I1 than for I2 . They
increase for I2 and decrease for I1 with increasing uE0u,
indicating that the dynamic focusing effects become
stronger farther away from threshold. As a consequence
the angle of the sideband beams of I1 and the angle of the

Fig. 13. Spatial Fourier spectra of the two largest eigenmodes
from Fig. 12(b) (solid curve) and from Fig. 12(e) (dashed curve).

Fig. 14. Behavior of (a) the basic spatial frequency K0 and (b)
the frequency gap DK as functions of the applied field strength
for (L) beam I1 and (h) beam I2 . Solid curves, cubic splines
through the data points.
sideband beams of I2 are no longer equal. Because of the
running grating they also have become time dependent,
which leads to the behavior of the wandering spots in
Figs. 6(c) and 6(d).

Extrapolation of K0 and DK toward the threshold cor-
roborates the statement that the secondary bifurcation
happens immediately after the primary one, because K0
and DK approach the same value for I1 and I2 , and, in
particular, DK obviously tends toward a nonzero value.
The amplitudes of both eigenmodes, of course, go to zero
at threshold.

A similar bifurcation behavior was already observed,
e.g., in a two-level laser model with positive frequency
detuning.26 There it could be shown by means of an or-
der parameter equation that above threshold both stand-
ing and running transverse wave patterns exist but that
only the latter ones form a stable solution.

5. CONCLUSIONS
The counterpropagation of two laser beams in a sluggish
photorefractive medium with nonlocal response has been
investigated analytically and numerically. A nonautono-
mous linear stability analysis for arbitrary parameter
values of the coupling strength and the pump ratio has
been performed, predicting the onset of spontaneous de-
stabilization of the homogeneous steady-state solution.
Above the primary instability threshold in our numerical
simulations we observed the occurrence of running trans-
verse waves in the optical near field and wandering spots
in the far field. Both the temporal frequency of the limit
cycle oscillation and the spatial frequency of the trans-
verse modulation agree well with the values predicted by
the stability analysis. The effect of linear absorption
shifts the onset of pattern formation to a higher field
strength and results in slower oscillation frequencies of
the patterns but does not change the type of running
transverse wave. Above threshold, transverse modula-
tions in the amplitude of the reflection grating cause dy-
namic focusing effects of the beams. An eigenmode
analysis identifies the running transverse waves as sec-
ondary instabilities. Close to threshold, the running
transverse waves are formed through the combination of
two fundamental substructures. Only spatially symmet-
ric patterns were found.

Numerical simulations performed here were done in
one transverse dimension. We plan to extend the simu-
lations to two transverse dimensions. Based on the one-
dimensional results, we expect that different patterns will
appear in the far field: two wandering spots, or a con-
tinuous ring, or moving spots on a ring forming squares or
hexagons. Which of these structures will be seen will de-
pend on boundary and geometrical conditions.

In performing stability analysis it has become clear
that modulation depth of the steady-state fixed-point so-
lutions is important for stability. Whenever the instabil-
ity threshold is reached, the modulation depth is no
longer small. This result leads to an inconsistency with
the Kukhtarev model. Phenomenological correction
functions introduced so far27 were able to explain experi-
mental gain measurements,28 for example. However, the
nonlinear response of the complex amplitude of the space-
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charge field to a sinusoidal intensity grating results in a
different dynamic behavior in the case of an externally
applied static electric field29 and also in complicated be-
havior of the phases.30 In our opinion inclusion of these
correction functions is not sufficient to adequately de-
scribe pattern formation for high modulation depths.

A further remark concerning the temporal evolution of
patterns is in order. The applied field always induces dy-
namic instabilities through Hopf bifurcation because of
the removal of frequency degeneracy. The Kukhtarev
standard model, which has been employed to describe
temporal evolution here and in all other publications
studied, was applied under the assumption that the pho-
torefractive time constant depends inversely on the total
intensity. For the interaction through transmission
gratings in the plane-wave limit the total intensity is con-
stant. However, in the case of reflection gratings the to-
tal intensity has become z dependent. Owing to the
Gaussian beam profile, it also has become x dependent.
As a consequence, the time constant varies in different re-
gions within the crystal. The crystal reacts faster in il-
luminated regions, and the building of refractive-index
changes proceeds at different paces. This result has no
influence on the steady state and does not qualitatively
change our results close to the instability point. How-
ever, it affects the temporal evolution of spatiotemporal
patterns and may alter the dynamic focusing, which is ab-
sent in the steady state. We plan to address these ques-
tions in the future.
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