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1. INTRODUCTION
Photorefractive (PR) rings hold promise for use in image
processing,1 beam cleanup,2 optical storage, and
computing.3 Such applications envisage operation in
parallel. It is natural to inquire about the transverse ef-
fects in PR rings. These effects have not been the subject
to much theoretical interest. Attention has been con-
fined mostly to unidirectional rings at low Fresnel num-
bers; in addition, rings are interesting for the study of
transverse pattern formation and spatiotemporal (ST)
mode dynamics.4–6 It is in these systems that the first
demonstration of periodic and chaotic mode alternation as
well as of turbulence by means of optical defects was
accomplished.7

A general theory of mode structure in rings was devel-
oped by Yariv and by Kwong et al.2 and by Anderson and
Saxena.8 In these and in more-recent accounts,4–6 plane-
wave (PW) or empty-cavity truncated mode decomposi-
tions were used to describe the intracavity field. Our ap-
proach is different. We let the loaded cavity spon-
taneously build intracavity modes, supplying only the
pump fields and the resonator and crystal parameters.
We observe the intracavity field response to changes in
these parameters.

Specifically, we are interested in the response at high
Fresnel numbers, when PW or empty-cavity mode decom-
positions are inappropriate. In this case longitudinal
modes become important, and we investigate simple cases
in which mode competition becomes weakly turbulent
through intermittence. We do not use a Fresnel number
0740-3224/98/061714-12$15.00 ©
as the bifurcation parameter because it conveys informa-
tion about the geometrical aspects of the cavity and plays
a role similar to the aspect ratio in hydrodynamics. We
choose cavity detuning as a more relevant bifurcation pa-
rameter.

Section 2 of this paper contains a description of the
model. In Section 3 we discuss unidirectional rings, in
Section 4 we discuss bidirectional rings, and in Section 5
we list our conclusions.

2. MODEL
The geometry of interest is presented in Fig. 1. Trans-
verse analysis of both unidirectional and bidirectional
rings is performed by a realistic numerical simulation.
We let intracavity fields in the ring grow from a seed, us-
ing energy supplied by the pumps. The fields circulate
clockwise and counterclockwise about the ring, and inter-
act with each other and with the pumps within a PR crys-
tal that is placed as an active intracavity element. A nu-
merical code consists of two loops, one dealing with the
resonator and the other dealing with wave mixing in the
crystal. For simulation of the wave mixing process we
use our numerical four-wave mixing (4WM) procedure,9

which is nested in the resonator loop.
Wave equations that describe the 4WM process in PR

crystals in the paraxial slowly varying envelope approxi-
mation are of the form

]zA1 1 bK̂ • ¹A1 1 if¹2A1 5 QA4 2 aA1 , (1a)

]zA2 1 bK̂ • ¹A2 2 if¹2A2 5 Q̄A3 1 aA2 , (1b)
1998 Optical Society of America
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]zA3 2 bK̂ • ¹A3 2 if¹2A3 5 2QA2 1 aA3 ,
(1c)

]zA4 2 bK̂ • ¹A4 1 if¹2A4 5 2Q̄A1 2 aA4 ,
(1d)

where Aj(x, y, z) are the slowly varying envelopes of the
four beams, a is the linear absorption, b is the relative
transverse displacement (caused by the noncollinear
propagation of the four beams), and f controls diffraction.
In scaled coordinates b 5 u/D, where u is the half-angle
at the beam intersection and D is the angular spread of
the interacting beams. f is proportional to the inverse of
the Fresnel number: f 5 (4pF)21. K̂ • ¹ is the di-
rectional derivative in the transverse (x, y) plane along
the gratings’ unit wave vector K̂, and ¹2 is the transverse
Laplacian. The propagation direction z is scaled by the
crystal thickness d, and the transverse directions are
scaled by the beam spot size w0 . We point K̂ along the x
axis.

The temporal evolution of the transmission grating am-
plitude Q is approximated by a relaxation-type equation:

t] tQ 1 Q 5
G0

I
~A1Ā4 1 Ā2A3!, (2)

where t is the relaxation time of the grating, G0 is the PR
coupling constant, and I is the total intensity. A more
comprehensive theory10,11 based on the Kukhtarev
model12 contains additional terms that incorporate trans-
verse gradients of Q divided by the product of the Debye
wave vector and the transverse beam spot size. This

Fig. 1. Photorefractive ring oscillators: (a) unidirectional, (b)
bidirectional. Aj are the slowly varying envelopes, and Q is the
amplitude of the transmission grating.
product is typically large, justifying the omission of spa-
tial derivatives in Eq. (2). Such an approximation
amounts to assuming that the characteristic length over
which the grating amplitude changes in the transverse di-
rection is large compared with the grating period. Inclu-
sion of the spatial derivative terms renders a numerical
analysis impractical.

The numerical solution of Eqs. (1) and (2) is accom-
plished by a modified spectral split-step method13 that ac-
counts for the two pairs of counterpropagating beams,
Eqs. (1), and a Runge–Kutta-like method for the temporal
evolution of Q, Eq. (2). Because of the adiabatic separa-
tion of the fast optical from the slow crystal processes, the
spatial integration loop can be separated from, and nested
within, the temporal integration loop.

The incident pump fields are displaced Gaussian
beams:

A1~x, y, z 5 0 ! 5 C1G~2j; x 2 b/2, y !, (3a)

A2~x, y, z 5 d ! 5 C2G~j; x 1 b/2, y !, (3b)

where z 5 0 and z 5 d denote the entrance and the exit
faces of the crystal, respectively, and G(j; x, y) is the
Gaussian beam function, where j is the curvature param-
eter. Pump fields A1 and A2 are kept constant in time.
It is interesting to allow for the temporal variation of the
pumps and monitor the changes in the intracavity field.
An arrangement of this kind opens the possibility of in-
teresting optical processing, such as optical logic or opti-
cal transistor action. An initial, PW analysis in this di-
rection was undertaken in the research reported in Ref. 3.

Intracavity fields A3 and A4 are connected by the oscil-
lation conditions

A4~x, y, z 5 0 ! 5 R exp~ik0L !FSP@A4~x, y, z 5 d !#,

(4a)

A3~x, y, z 5 d ! 5 R exp~2ik0L !FSP@A3~x, y, z 5 0 !#,

(4b)
where R represents passive resonator losses, k0 L is the
total propagation phase shift (k0 is the wave vector in free
space and L is the total optical path length), and FSP is
the free-space propagation operator, defined as

FSP~A3/4! 5 FT21@exp~7ifk2L/d !FT~A3/4!#, (5)

where FT denotes the transverse spatial Fourier trans-
form and FT21 denotes its inverse. Initially amplitudes
A3 and A4 are small, serving as mode seeds. Afterward
they grow spontaneously as the intracavity fields. The
spatial distribution of seeds has little influence on the fi-
nal mode distribution. This distribution is determined
by the resonator (including the crystal) and the pumps
only. Even though the Fresnel number is large, the
transverse-mode distribution need not be complicated, as
it is strongly influenced by the Gaussian pumps. If A3
5 A4 5 0 is assumed initially, it stays zero at all times.
Likewise, by choosing A2 5 A3 5 0 one obtains the two-
wave mixing ring. The same numerical package allows
for the analysis of both the unidirectional and the bidirec-
tional rings.

Let us introduce the relevant variables and param-
eters. We present intracavity fields A3 and A4 at the en-
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trance and the exit faces of the crystal as functions of cav-
ity detuning Cext , defined as

k0 L 5 2Mp 1 Cext , (6)

with 2p < Cext < p. M is an integer enumerating the
longitudinal modes. The other relevant parameter is the
imaginary part of the coupling constant, which we write
as

G 5
G0

1 1 itd
, (7)

where d is the frequency-shift parameter. In the PW lin-
ear theory d is equal to the (possibly) frequency offset V
between the pump and the intracavity field. Here the
situation is a bit different in that the linear relation be-
tween V and d holds only in the region d ' 0, where there
is an appreciable wave interaction. Outside this band V
saturates. We prefer d as an independent control param-
eter, for its clear physical meaning and ease in controlling
G. The imaginary part of G is responsible for the PR
phase shift in the cavity.

To check numerics and compare it with the analytical
and experimental results of Yeh1 and Yariv and Kwong
and of Kwong et al.,2 we first treat the PW case. Figure 2
shows different longitudinal cavity resonances of intrac-
avity field I4 as functions of cavity detuning Cext . The
coupling constant is kept real (d 5 0). As Cext is swept
through, a frequency offset V spontaneously appears in
the phase of A4 , compensating for the cavity detuning.
Figure 3 depicts one oscillation resonance for several gain
coupling strengths. The frequency offset is the same for
all G0 values. Perfect agreement is found with Yeh.1

A similar V profile is obtained if the cavity is tuned
(Cext 5 0) and a sweep is performed through frequency-
shift parameter d (Fig. 4). A characteristic feature of a
PW approximation is that a symmetric response of the in-

Fig. 2. (a) Intracavity intensity I40 as a function of cavity detun-
ing Cext , for d 5 0, G0 5 2, and R 5 0.9 and in the plane-wave
case. The unit of intensity is the incident pump intensity. (b)
Frequency offset V between the pump and the intracavity field as
a function of cavity detuning Cext .

Fig. 3. Same as Fig. 2(a) but for different G0 and across one
resonance. The values of G0 going from the inside to the outside
profiles are 1, 2, 4, 6, and 10. (b) Same as Fig. 2(b).
tracavity field is found with respect to the cavity detuning
(even-symmetric for the intensity and odd-symmetric for
the frequency offset). The situation changes, however, if
one varies the imaginary part of G at the same time. Fig-
ure 4 displays an asymmetric resonance profile and fre-
quency offset with respect to the cavity detuning when
d Þ 0. Such an asymmetric response has long been seen
in experiment2 but has not been explained.

3. TWO-WAVE MIXING UNIDIRECTIONAL
RING
Experimental accounts of unidirectional rings
abound;2,4,5,7,14 however, theoretical accounts are few.
Hennequin et al. and Dambly and Zeghlache4 considered
basic transverse dynamics when an external electric field
is applied across the crystal. Arecchi and co-workers7

have studied mode competition and optical turbulence in
unidirectional rings in much detail. They were the first
to present experimental evidence of optical phase defects
in PR resonators. They also introduced the situation in
which periodic and chaotic alternation of modes leads to
ST chaos.

We proceed in the numerical treatment of the two-wave
mixing ring by assuming that A2 5 A3 5 0. The picture
of mode buildup changes considerably with the inclusion
of transverse dimensions. Here we include one trans-
verse dimension, x. Under the influence of diffraction
and nonlinear interaction within the crystal one expects
different mode structures to arise in the transverse plane.
The resonator can support a multitude of transverse and
longitudinal modes. Within the resonator we place nei-
ther diffraction-limiting apertures nor curved mirrors.
Of interest are those modes that spontaneously emerge,
and their temporal evolution. We choose to present some
results of mode competition and coexistence, and of spon-
taneous symmetry breaking in the cavity, which led to
weak optical turbulence. An example of the transition to
ST chaos through crisis-induced intermittency at a het-
eroclinic tangency is discussed.

Without frequency detuning (d 5 0) one finds exclu-
sively stationary solutions of the intensity for any value of
G0 and Cext . The intensity of the signal beam, I40
5 I4(z 5 0), attains a constant value, whereas the phase
develops a frequency offset V from the pump, in agree-
ment with the results obtained in the PW limit. The

Fig. 4. (a) Same as Fig. 3(a) but for different td and for G0
5 10. The values of td are as follows: solid curve, td 5 0; dot-
ted curve, td 5 20.03; dashed curve, td 5 20.47; dashed–
dotted curve, td 5 20.8. (b) Corresponding frequency offset V.
The other parameters are as in Fig. 2.
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beam profiles in the transverse dimension remain Gauss-
ian. For the subsequent discussion we fix some param-
eters:

G0 5 2.0, R 5 0.9, f 5 3 3 1024,

a 5 0.1, b 5 0.

Note that we define f by using the crystal thickness, and
not the resonator length, as the scaling length in the
propagation direction. The corresponding value of the
Fresnel number is huge. We also set L/d 5 10.

When a frequency detuning of d 5 20.47 (in units of
t21) is present and the cavity detuning is in the range
20.05p < Cext < 0.092p, the situation is similar to the
case when d 5 0, and we observe a stationary Gaussian
intensity profile. This structure is state 1 in Fig. 5,
which displays a schematic overview of the bifurcation be-
havior that becomes different as Cext is further increased.
Three additional transverse structures are observed, i.e.,
states 2̄, 3, and 4̄ in Fig. 5. The stationary intensity pro-
files of these states are shown in Fig. 6. For Cext
5 0.094p one observes a transverse beam profile consist-
ing of two symmetric spots, resembling a Gauss–Hermite
mode of the first order. For states 3 and 4̄ a bump and a
dip emerge between the symmetric spots. Although I40 is
constant in time, frequency detuning causes oscillation of
the fields, similar to the one observed in the PW limit.
Figure 7 displays the ST dynamics of the real part of A40
for all four states. The oscillation frequency V is differ-
ent for each state, and it increases with increasing Cext .
However, it remains less than one t21. In Figs. 7(b) and
7(d) the real parts of the field reveal antisymmetry with
respect to the beam center, and therefore we call them
states 2̄ and 4̄, respectively. Their imaginary parts show
identical, but 90° out of phase, oscillations.

Despite the fact that there are no specific criteria pre-
scribed for the selection of transverse modes and that the
Fresnel number is high, we observe low-order Gauss–
Hermite mode structures as well as an alternating occur-
rence of symmetric and antisymmetric real and imagi-
nary parts of field A40 with a higher mode index. They
all arise spontaneously as Cext is varied. Cavity detun-
ing acts as a mode selector, similar to that for lasers. In
a laser with curved mirrors the Gauss–Hermite modes
become resonant when the atomic transition frequency,
the resonator detuning, or both are varied. In analogy,
one might have a similar understanding of the occurrence
of stationary structures observed in this system. Varia-
tion of Cext changes the oscillation frequency V of the sig-
nal beam; hence a resonance appears with the oscillation
frequencies of different transverse-modelike structures;
i.e., the frequency V that is supported by the resonator
lies within the gain line of one of the stationary states.
This state is favored and the others are suppressed. The
difference between these structures and lasers is that the
emission frequency in lasers remains close to the cavity
resonance, whereas in unidirectional PR rings it remains
close to the pump frequency. The gain bandwidth of PR
rings is quite narrow.

Besides the occurrence of stationary transverse-
modelike structures, we observe regular and irregular ST
dynamics, depending on the value of Cext in between the
Fig. 5. Schematic representation of different ST states obtained
by variation of cavity detuning Cext . The bars denote spatially
antisymmetric states.

Fig. 6. Beam profiles of signal beam I40 5 I2(x, z 5 0): (a)
state 1 (Cext 5 0.091p), (b) state 2̄ (Cext 5 0.094p), (c) state 3
(Cext 5 0.097p), (d) state 4̄ (Cext 5 0.1p).

Fig. 7. ST dynamics of RA40 : (a)–(d) correspond to stationary
states (a)–(d) in the same order in Fig. 6.
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stationary states. When Cext is increased beyond state 2̄,
chaotic oscillation (C1) followed by periodic oscillation
(P1) occurs. Between symmetric state 3 and antisym-
metric state 4̄ a spatially antisymmetric and temporally
chaotic state C̄2 and a periodic state P̄2 are found.
These periodic and chaotic states seem to be the superpo-
sition of two, not necessarily neighboring, stationary
states. To illustrate this we have plotted in Fig. 8 the ST
dynamics of chaotic state C1 and periodic state P1. In
the intensity I40 of P1 the two lateral spots oscillate syn-
chronously and alternately with a faint central spot. In
the real part of A40 one sees two oscillating patterns: a
symmetric pattern from state 3, as in Fig. 7(c), which is
superimposed upon the symmetric pattern from state 1,
as in Fig. 7(a). The power spectrum of state P1 [Fig.
9(b)] reveals two dominant frequency lines, which ap-
proximately coincide with frequencies V1 and V3 of the
involved stationary state patterns 1 and 3. Other fre-
quency lines in the spectrum are the higher harmonics of
the frequency difference V1 2 V3 . This regular mode
oscillation can therefore be understood as the phenom-
enon called mode beating.

Similar behavior holds for chaotic state C1, with some
important differences. It is a symmetric state, as sym-
metric beating dominates the pattern. In the temporal
signal one notes laminar sections that resemble state P1,
and intermittent chaotic bursts. The intensity pattern
consists of two spots plus one that oscillate alternately
synchronously in the laminar regions and asynchronously
in the irregular regions. During chaotic bursts a sponta-
neous symmetry breaking of the spatial transverse profile

Fig. 8. Temporal change of the transverse profiles of intracavity
field A40 : (a) intermittent chaotic state C1 for Cext 5 0.095p,
intensity distribution; (b) distribution of the real part; (c) periodic
mode oscillation P1 for Cext 5 0.096p, intensity distribution; (d)
real-part distribution.
occurs. In the power spectrum of C1 [Fig. 9(a)] a broad-
band continous spectrum dominates. All these signa-
tures point to weakly turbulent crisis-induced intermit-
tency. The same analysis performed on states P̄2 and
C̄2 yields similar results, the major difference being that
one deals with the antisymmetric states.

By a Karhunen–Loève eigenmode analysis15 we sub-
stantiated these findings. Such an analysis provides in-
formation about the ST behavior of involved substruc-
tures as well as about the symmetry of the substructural
patterns.16 In Fig. 10 the real and the imaginary parts
(at the left) and the intensity (at the right) of the four
largest eigenmodes p(i)(x) of chaotic state C̄2 are dis-
played. The first and third eigenmodes correspond to an
antisymmetric, and the second and fourth eigenmodes to
a symmetric, substructure. The intensities contain two
or four prominent spots. The sum of the eigenvalues l (i)

of these four eigenmodes is larger than 95%, so these
eigenmodes contain most of the information on the struc-
ture. The higher eigenmodes contribute small correc-
tions.

The irregular temporal evolution of eigenmodes
(ua (i)(t)u2) explains the dynamics of C̄2 (Fig. 11). Eigen-
mode ua (1)(t)u2 performs a laminar (nearly periodic) oscil-
lation in different time intervals, displaying synchronous
oscillation of the two spots. Within such laminar inter-

Fig. 9. (a) Power spectrum (arbitrary units) of chaotic state C1.
The spectrum is calculated for the complex electric field A40(x
5 20.74, t), and the frequency V is given in units of 1 /t.
Dashed lines represent the frequencies of the stationary oscilla-
tion of states 1 (V1 5 20.0053) and 3 (V3 5 20.018). (b)
Power spectrum of periodic oscillation P1.
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Fig. 10. Complex eigenmodes of chaotic oscillation C̄2 in Fig. 6: left, real and imaginary parts of eigenmodes p(i)(x); right, corre-
sponding moduli up(i)u2.
vals the amplitude of oscillation increases, becomes
irregular, and finally collapses. At that moment
ua (2)(t)u2 emerges, and it lasts until another laminar in-
terval begins. ua (3)(t)u2 exhibits an irregular temporal
behavior; however, signal ua (4)(t)u2 is nearly synchronized
with the bursts in ua (2)(t)u2. To characterize state C̄2
further, we introduce a symmetry-breaking index S. It
is defined as the integrated difference between the left
and the right halves of the intensity profile.17 If the two
halves of the profile oscillate synchronously, then S
5 0; if the oscillation is asynchronous, then S Þ 0.
Thus S points to the appearence of spontaneous spatial
symmetry breaking in the system. Figure 12(a) repre-
sents S for state C̄2. It is seen that symmetry breaking
in the system is connected to the appearence of eigen-
modes ua (2)(t)u2 and ua (4)(t)u2. Eigenmode ua (1)(t)u2 is
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nearly synchronous and antisymmetric, which justifies
our denoting C̄2 an antisymmetric, asynchronous chaotic
state. There are also synchronous chaotic states in
rings,17 but they are not discussed here. An example of
synchronous chaos is presented in Section 4. P̄2 is an
antisymmetric, synchronous periodic state.

The dynamic behavior of C̄2 points toward a process
called crisis-induced intermittency18 as the route to ST
chaos, which here is due to a boundary crisis. In the
boundary crisis there is a heteroclinic tangency between
two unstable solutions. For different time intervals the
system oscillates in the basin of an unstable solution, rep-
resented in this case by p(1). Following a heteroclinic
tangential orbit, the system comes close to the basin of
the other unstable orbit [here p(2)] and stays there for
some time before again reaching the basin of attraction of
Fig. 11. Time expansion coefficients ua (i)u2 of the complex eigenmodes in Fig. 10.
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the first orbit, and so on, with a temporally irregular rep-
etition. Heteroclinic connections have already been sug-
gested as the mechanism for mode alternation in unidi-
rectional PR rings.19 However, that theory is restricted
to cylindrical symmetry and developed in terms of Gauss–
Laguerre modes. We lack simple model expressions for
the intracavity field. To identify this type of bifurcation
as a crisis-induced intermittency it is necessary to inves-
tigate the dependence of the mean length ^L & of intervals
with vanishing spatial symmetry breaking on bifurcation
parameter Cext . This, however, would require much
longer time series than the ones shown here. Even in the
present form, our numerical simulations require massive
computational support.

Fig. 12. Temporal development of symmetry-breaking index S:
(a) state C̄2, (b) state P̄2.

Fig. 13. (a) Integrated intracavity intensities I40 (solid curves)
and I3d (dashed curves) of the bidirectional ring as functions of
frequency-shift parameter d for three values of external mirror
reflectivities R: 0.5, 0.7, 0.9 (from the inside to the outside).
(b) Corresponding frequency offset V. The solid curve corre-
sponds to the highest value of the reflectivity; the dotted curve, to
the lowest.
An important question pertaining to the buildup of in-
tracavity field is whether it represents an oscillation or an
optical amplification process. We believe that in essence
the conclusions reached in our paper20 on oscillation ver-
sus amplification in double phase conjugation stand in
this case as well. Thus we believe that in the PW case
both unidirectional and bidirectional rings are oscillators;
in the transverse case they can be both oscillators and
amplifiers, depending on the values of the diffractive f
and the convective b parameters. In addition to convec-
tion, an important mechanism in promoting amplifier be-

Fig. 14. (a) Integrated intracavity intensities I40 (solid curve)
and I3d (dashed curve) of the bidirectional ring as functions of
frequency-shift parameter d in the plane-wave case. (b) Same
as (a) but for the transverse case.

Fig. 15. (a) Transverse intensity profiles of intracavity intensi-
ties I4d (solid curve) and I3d (dashed curve) in the PC case. (b)
Corresponding phases. Note the different scales for the intensi-
ties.
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havior is the multimode operation of the device. Such de-
vices exhibit a continuous buildup of modes over an
extended threshold region.

4. FOUR-WAVE MIXING BIDIRECTIONAL
RING
Plane-wave analysis of bidirectional rings has been per-
formed by Gu and Yeh21 and by Petrović and Belić.22

Pattern dynamics in bidirectional PR rings has been nu-
merically investigated by Chen and Abraham and by
Chen et al.6 In their analysis a truncated set of Gauss–
Laguerre empty-cavity modes was used as the underlying
modal basis, and the Fresnel number played the role of

Fig. 16. (a) Same as Fig. 15, for td 5 20.5. (b) Same as (a), for
td 5 0.5. Note the different scales for the intensities.
the bifurcation parameter. We use cavity detuning as
the bifurcation parameter, as it acts as a mode selector.
The Fresnel number acts more as an aspect ratio. We
prefer to keep it fixed.

In the 4WM rings the full set of Eqs. (1) and (2) must be
used. We are again more interested in the antisymmet-
ric response of the cavity with regard to the detuning and
frequency shifts. A substantial difference in the opera-
tion of bidirectional rings, compared to that of unidirec-
tional rings, is noted immediately. Both unidirectional
and bidirectional rings require a coupling strength above
a threshold for oscillation; however, only the unidirec-
tional ring is self-starting. For small intensity ratios of
pumps (less than 2), bidirectional rings require a nonzero
seeding. A seeding threshold develops as well. A fur-
ther difference is more consequential: Whereas the inte-
grated intracavity intensity in the unidirectional ring is
peaked at d 5 0 and is flat topped at higher couplings, it
develops a multipeaked structure in the bidirectional ring
as the coupling strength increases. This phenomenon is
visible in Fig. 13. The significance of this fact is that in a
tuned cavity with Cext 5 0 the unidirectional ring prefers
to oscillate at the pump frequency, whereas the bidirec-
tional ring will tend to detune spontaneously to maximize
the 4WM efficiency. The physical origin of this sponta-
neous detuning is not fully understood and is the subject
of some controversy.23

PW theory predicts the appearance of two symmetric
peaks in intracavity intensity I4 with respect to frequency
parameter d, whereas experimental results show two an-
tisymmetric and shifted peaks. A discussion in the
literature23 aimed at explaining the discrepancy; no con-
sensus was reached. We believe that simple mechanisms
should be explored before more-exotic explanations are of-

Fig. 17. Time signal at the center of beams I30 and I4d when an
external electric field is applied to the crystal: (a) E0
5 1.8 kV/cm, periodic dynamics; (b) E0 5 3 kV/cm, irregular dy-
namics. Arrows indicate the time interval during which the
snapshots in Figs. 18(b) and 18(c) were taken.
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Fig. 18. Transverse patterns of intracavity intensities I30 and I4d . (a) E0 5 1.8 kV/cm, corresponding to Fig. 17(a). The snapshots
were taken across one period, from t 5 11t to t 5 12.4t. (b) E0 5 3 kV/cm, corresponding to Fig. 17(b). (c) Continuation of (b). The
time interval between two consecutive snapshots in (b) and (c) equals 2t, starting from t 5 17t.
fered. The simplest mechanism is to take into account
the transverse spread of pumps and intracavity modes.
Asymmetry obtained in this manner is depicted in
Fig. 14.

When transverse dimensions are accounted for, the
mode dynamics and the transition to ST chaos proceed
similarly to those for the unidirectional rings. We are
concerned here with two specific questions: First, under
what conditions are the two counterpropagating cavity
modes phase conjugates (PC’s) of each other? It is
known6 that the PC property is not in general retained in
the bidirectional ring; however it might be important with
respect to the applications of rings. Second, bearing in
mind the crucial influence of the crystal on mode selection
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in the ring, what modelike structures can a crystal sup-
port by itself?

Figure 15 offers an answer to the first question. It dis-
plays transverse profiles of the intracavity modes, both
the intensity and the phase distribution, for steady-state
degenerate operation in a tuned cavity with real G0 and
away from instabilities. The pumps have the same
Gaussian profile; both are focused into the crystal, with
the beam ratio r 5 uC1 /C2u2 5 2. Under such symmet-
ric conditions (except for r) the counterpropagating modes
are PC’s of each other. However, as soon as the system is
disturbed with respect to degeneracy, cavity tuning, or
both, the exact phase conjugation is lost. In Fig. 16 a
nonzero frequency shift d is introduced, which causes a
significant change. Even though the phases of the modes
are of the opposite sign, the modes are not PC’s of each
other, and the amplification factor of the ring is not the
same for both of them.

Concerning the second question, we disconnect the
crystal from the cavity and apply an external electric field
across it. The field will play the role of the bifurcation
parameter. Similar to the influence of d, an external
field makes the coupling constant complex, but in addi-
tion it makes the relaxation time of the crystal complex.
Thus the oscillation is still frequency shifted. An exter-
nal electric field also promotes instabilities of the intrac-
avity field at higher G0 .9,24 We now include both trans-
verse dimensions. Figure 17 represents the temporal
change of I30 and I4d at the center of the beams for two
values of the external field. The other parameters are as
follows:

G0 5 4.0, f 5 0.01, a 5 0, b 5 1024.

For E0 5 1.8 kV/cm one obtains a periodic response; for
E0 5 3 kV/cm one obtains an irregular temporal re-
sponse. It is interesting to note that in the periodic case
the fields oscillate out of phase, which is reminiscent of
the antiphase mode dynamics described theoretically in
Ref. 6 and seen experimentally in Ref. 25. Figure 18 de-
picts transverse profiles of beams I30 and I4d at the afore-
mentioned two values of the external field. Antiphase
dynamics is pronounced, even in the temporally chaotic
case. Another interesting feature is that ordered, sym-
metric patterns are obtained, even though the fields at
any spatial location within the crystal produce temporally
chaotic signals. Such behavior is an example of the mode
alternation with synchronized chaos.7,17 We should men-
tion that the square-symmetric patterns appear sponta-
neously, guided by the transverse wave-vector matching
conditions appropriate for a 4WM process and by square
mirrors. By imposing different matching conditions, and
by depending on the boundary conditions, we can produce
patterns of different (e.g., hexagonal) symmetry.

5. CONCLUSIONS
We have studied transverse effects in unidirectional and
bidirectional PR ring resonators. In the case of the uni-
directional ring oscillator, the occurrence of four different
transverse structures similar to low-order Gauss–
Hermite modes was observed, depending on the resonator
detuning. These structures possess either symmetric or
antisymmetric field distributions. Regular and irregular
mode oscillations were found, which were shown to be a
dynamic superposition of two modelike structures. Such
superposition results in the appearence of two wandering
spots (with or without an accompanying central peak),
which have periodic and aperiodic motion. A complex
eigenmode analysis allowed us to determine the symme-
try of the complex spatial field modes. As far as the ST
dynamics is concerned, apart from the periodic mode
beating a heteroclinic tangency between symmetric and
antisymmetric mode oscillation was observed, leading to
ST chaos. The temporal evolution displayed the charac-
teristic behavior of crisis-induced intermittency. Our nu-
merical simulations are in general qualitative agreement
with experimental results,4,5,14 in which also superposi-
tions of a few low-order Gauss–Hermite or Gauss–
Laguerre modelike structures were found to dominate the
ST dynamics of the intracavity field.

In the case of the bidirectional ring we investigated the
possibility of the existence of PC intracavity modes. Un-
der general oscillation conditions bidirectional rings do
not support such modes. However, when the cavity is
tuned, the coupling constant is real, and the pumps are
PC’s of each other, the counterpropagating intracavity
modes will also be the PC’s of each other. In view of the
forbidding computational requirements for the full reso-
nator simulation, we first investigated what modelike
structures can be supported by an individual PR crystal.
Such a question is relevant if one is aware of the crucial
influence the crystal has on the selection of modes in PR
resonators. A continuous variety of slowly evolving
modelike transverse patterns was found, with spatially
ordered intensity distributions and with either periodic or
chaotic temporal evolution.

We plan to extend the simulations to two transverse di-
mensions in different PR resonators. We plan to con-
sider the cases in which the pumps possess more-
complicated spatial structure and are time varying.
Such questions are more relevant for optical processing in
parallel. The main obstacle to such a program is the
need for massive computational support.

ACKNOWLEDGMENTS
Research at the Darmstadt University of Technology is
supported within the SFB 185 project of the Deutsche
Forschungsgemeinschaft. That at the Institute of Phys-
ics is supported by Project 01M07 of the Ministry of Sci-
ence and Technology of the Republic of Serbia.

REFERENCES
1. P. Yeh, Introduction to Photorefractive Nonlinear Optics

(Wiley, New York, 1993).
2. A. Yariv and S.-K. Kwong, Opt. Lett. 10, 454 (1985); S.-K.

Kwong, M. Cronin-Golomb, and A. Yariv, IEEE J. Quantum
Electron. QE-22, 1508 (1986).
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F. Kaiser, Opt. Commun. 123, 657 (1996).

4. D. Hennequin, L. Dambly, D. Dangoisse, and P. Glorieux, J.



Leonardy et al. Vol. 15, No. 6 /June 1998 /J. Opt. Soc. Am. B 1725
Opt. Soc. Am. B 11, 676 (1994); L. Dambly and H.
Zeghlache, Phys. Rev. A 49, 4043 (1994).

5. B. M. Jost and B. E. A. Saleh, J. Opt. Soc. Am. B 11, 1864
(1994); Phys. Rev. A 51, 1539 (1995).

6. Z. Chen and N. B. Abraham, Appl. Phys. B: 60, 5183 (1995);
Z. Chen, D. McGee, and N. B. Abraham, J. Opt. Soc. Am. B
13, 1482 (1996).

7. F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Resi-
dori, Phys. Rev. Lett. 65, 2531 (1990); 67, 3749 (1991); F. T.
Arecchi, Physica D 51, 450 (1991).

8. D. Z. Anderson and R. Saxena, J. Opt. Soc. Am. B 4, 164
(1987).
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