
1602 J. Opt. Soc. Am. B/Vol. 12, No. 9 /September 1995 Belić et al.
Spatiotemporal effects in double phase conjugation
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Spatial and temporal effects arising in photorefractive crystals during the process of double phase conjugation
are analyzed numerically with a novel beam-propagation method. Slowly varying envelope wave equations
in the paraxial approximation are solved under the appropriate boundary conditions. Our analysis includes
dynamical effects caused by the buildup of diffraction gratings in the crystal and the turn-on of phase-conjugate
beams as well as spatial effects caused by the finite transverse spread of beams and by the propagation
directions of the beams. Various phenomena are observed, such as self-bending of phase-conjugate beams,
convective flow of energy out of the interaction region, mode oscillations, critical slowing down at the oscillation
threshold, and irregular spatial pattern formation. For a real beam-coupling constant and constructive
interaction of interference fringes in the crystal we find steady or periodic behavior. For a complex coupling
constant and/or induced phase mismatch in the grating a transition to spatiotemporal chaos is observed. We
believe that under stable operating conditions the transverse double phase-conjugate mirror in the paraxial
approximation is a convective oscillator, rather than an amplifier. Improved agreement with experimental
results is obtained.
1. INTRODUCTION

Double phase conjugation (DPC) was shrouded in con-
troversy almost from its conception. It is an interesting
wave mixing process in which two laser beams illuminate
a photorefractive (PR) crystal incoherently, causing the
appearance of two counterpropagating phase-conjugate
beams (Fig. 1). DPC was suggested and first demon-
strated by Cronin–Golomb et al.1 but was deemed im-
probable by the same group, because of the competing
conical emission. Indeed, the initial demonstration was
achieved with the use of additional mirrors. It took a
few years for Fischer and his colleagues2 to demonstrate
DPC in its pure form, two beams plus a crystal. What
made this possible is the preferential amplification of both
conjugate beams by a particular set of fanning gratings.

A more recent controversy involving DPC is connected
with the question whether DPC is a self-oscillation
process or an optical amplification process. The differ-
ence between the two is subtle in numerical simulations
as well as in experiment. It amounts to whether a fi-
nite phase conjugate (PC) output can be obtained from
zero (i.e., infinitesimal) input or whether a finite input
0740-3224/95/091602-15$06.00 
is always needed. Oscillation requires a fast (exponen-
tial) growth rate above threshold and a feedback mech-
anism. In the plane-wave (PW) case it is agreed that
DPC is an oscillation.2 In the spatial case with one or
two transverse dimensions this is not clear. The analy-
sis of Ref. 3, based on a linear, undepleted-pumps theory,
indicates that DPCM is a convective amplifier. This was
confirmed experimentally by the same group for arbi-
trary large angles between the interacting beams.4 A
more recent and more comprehensive analysis of a simi-
lar theory5 (including depletion and diffraction) reaffirms
that conclusion. Another transverse model6 based on a
PW expansion claims that the double phase-conjugate
mirror (DPCM) is still an oscillator. The theory pre-
sented in Ref. 7 uses the vectorial nature of coupled-wave
equations to show that the DPCM is an oscillator.

Among other things, we try to elucidate this contro-
versy. However, this is not the central theme of this pa-
per. In general, we want to understand the operation
of a DPCM and to study its spatiotemporal behavior. A
convenient starting point for such a program is the wave
equations describing four-wave mixing (4WM) processes
in the paraxial approximation:
1995 Optical Society of America
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Fig. 1. DPCM. Pump beams A2 and A4 enter the crystal from
opposite sides. A1 is the PC of A2, and A3 the PC of A4. z is the
propagation direction and x is one of the transverse directions,
the other, y, being perpendicular to the x–z plane. Q represents
the amplitude of the transmission grating. V is the high-voltage
source of the electric field E0 (see Section 5).

≠zA1 1 bK̂ ? =T A1 1 if=T
2A1  QA4 , (1a)

≠zA2 1 bK̂ ? =T A2 2 if=T
2A2  QA3 , (1b)

≠zA3 2 bK̂ ? =T A3 2 if=T
2A3  2QA2 , (1c)

≠zA4 2 bK̂ ? =T A4 1 if=T
2A4  2QA1 , (1d)

where Aj sx, y, zd are the slowly varying envelopes of
the four beams, b is the relative transverse displace-
ment (caused by the noncollinear propagation of the four
beams), and f is the parameter controlling the diffraction
in the crystal. In scaled coordinates b  uy

p
2 d, where u

is the half-angle at the beam intersection and d is the an-
gular spread of the interacting beams. f is proportional
to the inverse of the Fresnel number: f  s4pF d21.
K̂ ? =T is the directional derivative in the transverse sx, yd
plane along the grating wave vector K̂, and =T

2  DT is
the transverse Laplacian. The bar denotes complex con-
jugation, and Q is the amplitude of the grating that is gen-
erated in the crystal. The x and y axes are arranged so
that the wave vector of the grating points along the y  x
direction. Equations (1) are derived in Appendix A.

To these equations one must specify boundary condi-
tions. The conditions are that the four initial ampli-
tudes C124 be launched into the crystal, as in Fig. 1. The
transverse amplitude profiles are assumed to be displaced
Gaussians, with parameters that take into account non-
collinear propagation of the beams:

A4,1sx, y, 0d  C4,1Gs2z , rd ,

A2,3sx, y, dd  C2,3Gsz , rd , (2)

where z  0 and z  d  1 denote the entry and the
exit faces of the crystal, respectively, and Gsz , rd is the
Gaussian beam function:

Gsz , rd 
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Here z  4jyF , where j is the beam curvature
parameter8 and F is the Fresnel number. r2  fsx 6

by2d2 1 sy 6 by2d2gys2, where s is the stretching factor
that keeps the transverse computational space between
21 and 11. In DPC the initial PC beams C1 and C3

are not supplied externally; they arise from the noise
in the crystal. Therefore we set C1 and C3 very small
compared with the pumps C2 and C4 (in general smaller
than 1024).

The temporal evolution of Q is approximated by a re-
laxation equation of the form

t≠tQ 1 hQ 
G

I
sA1A4 1 A2A3d , (4)

where t is the relaxation time of the grating, h is a di-
mensionless parameter dependent on the ratio of internal
electric fields of the PR crystal, I is the total intensity, and
G is the PR coupling strength (coupling constant times the
crystal thickness). Both G and b can be positive or nega-
tive; however, we consider only the positive values. The
waves are following the changes in the crystal adiabati-
cally; therefore the temporal derivatives in Eqs. (1) are
ignored. Likewise, the spatial derivatives are neglected
in Eq. (4), because the diffusion effects are controlled by
the slow electronic processes in PR crystals.

Not many researchers were concerned with trans-
verse and dynamical effects in PR oscillators.9 Apart
from the Russian and American groups cited above,3 – 6

Liu and Indebetouw11 expressed interest in the dynam-
ics of vortices in PR cavities. They employed off-Bragg
wave-number mismatch as a means of destabilizing the
intracavity oscillation. Another way to destabilize the
intracavity field is to apply an external electric field
across the crystal, whereby the coupling constant is made
complex.12 We use this method to drive the system to
spatiotemporal chaos.

Numerical solution of 4WM problems including trans-
verse and dynamical effects is beyond the reach of
present-day computers. To our knowledge this has not
been attempted in its full complexity. An approximate
method based on a truncated modal decomposition is em-
ployed in Ref. 11. The authors decomposed an intracav-
ity field into a small number of Gauss–Hermite modes,
hoping to capture the dynamics of modes in the crystal
by a limited set of eigenmodes of the empty cavity. Not
more than qualitative agreement with experiment can
be expected from such a method, especially if there are
instabilities and chaos in the system.

Another transverse model, two-wave mixing with trun-
cated PW decomposition, is used to describe PR backscat-
tering, soliton propagation, and DPC.6 The treatment is
restricted to one transverse dimension. Similar in spirit
to our method is the whole-beam method presented by
Cronin-Golomb and Ratnam and Banerjee.10 All the in-
teracting beams in that method are treated as one com-
bined beam interacting with itself in the crystal. The
method is applied to two-wave mixing in steady state and
in one transverse dimension.

We present a novel numerical procedure that is
based on the thin gain sheets beam-propagation method
(BPM).13 The method was used originally for mode cal-
culations in high-power lasers, and here it is modified to
handle wave mixing in PR crystals. Such mixing permits
adiabatic separation of the spatial mode problem in the
crystal from the slow temporal problem of the buildup of
gratings. This makes the numerical problem tractable.
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Fig. 2. Self-consistency parameter a as a function of the cou-
pling strength G. Solid curves are the numerical solutions of
Eq. (B6); dashed curves are the approximate solutions, Eq. (B7).
Curves AA and BB are the simple PC curves, with the boundary
conditions jC1j2  jC2j2  1, jC3j2  0, and jC4j2  0.7 for the
AA and jC4j2  0.4 for the BB curves. Curve CC is the 4WM
curve, with the conditions jC1j2  0.4, jC2j2  1, jC3j2  0.1, and
jC4j2  1. Curve D is the DPC threshold curve, Eq. (7), with
the conditions jC2j2  1, jC4j2  0.1 (arbitrary units).

However, instead of treating all interacting beams as
one whole beam, or making PW or other truncated de-
compositions of beams, we retain the individuality of
all four beams. We perform mostly three-dimensional
simulations and include temporal variations. The pro-
cedure is checked in parts and as a whole on analytical
and numerical PW results, to yield good agreement. In
treating transverse effects we concentrate on the influ-
ence of diffraction because the effects of noncollinearity
have been thoroughly investigated by others.3 In treat-
ing dynamical effects we concentrate on the behavior that
leads to instabilities and spatiotemporal chaos.

This paper is organized as follows. Section 2 presents
the PW theory of DPC. A numerical method for solution
of Eqs. (1) and (4) is presented in Section 3. Section 4
deals with the spatial aspects of the generation and propa-
gation of PC beams in the crystal. Section 5 is concerned
with the dynamical effects connected with DPC, includ-
ing spatiotemporal instabilities. Section 6 provides dis-
cussion and offers some conclusions.

2. PLANE-WAVE THEORY
Analytical treatment of Eqs. (1) and (4) is not possible.
Equations without diffraction sf  0d have been con-
sidered in Ref. 3. Steady-state PW absorptionless 4WM
equations were first considered by Cronin-Golomb et al.1

The case of real coupling constants was treated in Ref. 14.
We follow that method. The solution procedure is out-
lined in Appendix B.

For DPC boundary conditions are simplified, in that
C1  0 and C3  0. This leads to a simplification in
the solution procedure of Appendix B. The exit PC fields
[from Eqs. (B2)] are given by

A30  C2 sinsud , A1d  C4 sinsud , (5)
where u  Qd 2 Q0 is the total grating action. The
boundary values Q0 at z  0 and Qd at z  d of the inde-
pendent variable Qszd from Appendix B are given by
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, (6)

where qp  sjC4j2 2 jC2j2dysjC4j2 1 jC2j2d is the ratio of the
input power flux to the total input intensity. The self-
consistency parameter a is found from the transcendental
equation

a  tanhsaGy2d . (7)

This is an important parameter in the theory. It defines
the threshold for oscillation. A sample of values for dif-
ferent wave mixing processes is depicted in Fig. 2. The

(a)

(b)
Fig. 3. Checking the numerics: comparison with PW solu-
tions (curves, analytical results; squares, numerical results).
Four fields inside the crystal are shown as functions of the
longitudinal spatial variable z. (a) dz  0.01, (b) dz  0.005.
In the following computations dz is kept fixed at 0.005.
The other parameters are b  0, G  5, h  1, jC2j2  0.1,
jC4j2  1, jC1j2  ejC4j2, jC3j2  ejC2j2, and e  1029. Linear
dependence of the numerical error on dz is evident.
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threshold condition on the coupling strength Gth  2 is
obtained from Eq. (7).

Thus for DPC the transmissivity of the crystal in both
directions is the same, Td  T0  T  sin2sud. We use
this conclusion and the solution above to check our nu-
merical procedure. As will be seen below, the equality of
transmissivities does not hold in the transverse case, ow-
ing to the nonreciprocity of the scattering in PR crystals.
It is interesting to note that by using the same method one
can prove that DPC with reflection-type gratings QR 
A1A3 1 A2A4 is not possible. More precisely, DPCM with
reflection-type gratings will not oscillate (however, it may
amplify the finite beam seeds of C1 and C4).

3. INTEGRATION METHOD
The problem with the integration of Eqs. (1) and (4) lies
in the nature of PR coupling and the split boundary con-
ditions that have to be satisfied at the opposite faces of
the crystal. We will attempt to accomplish integration
within slight, but reasonable, approximations. The de-
tails of our algorithm are presented in Appendix C.

The spatial propagation problem of Eqs. (1) is ad-
dressed by a modified spectral BPM13 used for mode
calculations in bare or loaded unstable resonators. A
solution of Eq. (4) is found by a Runge–Kutta or another
initial-value algorithm. The procedure is facilitated by
the fact that the temporal derivatives are neglected in
Eqs. (1) and the spatial derivatives are neglected in
Eq. (4). Thus the spatial integration can be separated
from and nested within the temporal integration loop.

The thin gain sheets BPM could be applied directly to
Eqs. (1) if the right-hand side of the jth beam equation
were of the form msI dAj . However, this is not the case,
and we modify the procedure to accommodate the new
form, keeping the spirit of the BPM alive. We use the
fact that the spatial equations are naturally paired into
two sets, with two pairs of copropagating fields. Thus we
concurrently propagate the pair sA1, A4d to the right and
the pair sA2, A3d to the left, constantly modifying them for
the coupling Q in an iterative self-consistent procedure.
After the fields have converged into a quasi-stationary
state corresponding to a given Q, the temporal evolution
for a time step is performed.

Another problem is the geometry of beam coupling, with
the two counterpropagating pairs of beams contributing
to Q. As the source of coupling in the spatial domain
is the grating amplitude Q (proportional to the space-
charge field in the crystal), it must be known at each
instant of time at all locations in the crystal. Likewise
for the total intensity I, which figures explicitly in Eq. (4)
(and is not an integration constant in the time-dependent
transverse case). This makes stringent requirements on
the computer core space.

In the PW case sb  f  0d we find good agreement be-
tween the numerical and the analytical solutions (Fig. 3).
If transverse effects are included and Gaussian input
beams are used, the intensities of the PC beams sI1, I3d
decrease compared with those in the PW case. The inclu-
sion of diffraction is always detrimental to the process of
DPC. Likewise, the inclusion of absorption is also detri-
mental to the process of DPC.
(a)

(b)

(c)
Fig. 4. (a) Limit cycle oscillation of the total transmissivity.
Solid curve, T0; dashed curve, Td. (b) Contour plot of the output
profile I3 versus transverse coordinates at t  150t. The profile
is shifted from the center at x  0, y  0 in the direction y  x of
the grating wave vector. (c) The profile at t  180t, close to the
maximum of the cycle. The parameters are as in Fig. 3, except
that G  3, e  1025, and the nonzero f  0.01.

4. SPATIAL EFFECTS

A. Self-Bending
The inclusion of transverse dimensions produces an in-
teresting readily observable effect: self-bending of PC
beams. This is a genuine transverse effect, caused (and
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(a)

(b)

(c)
Fig. 5. (a) Total transmissivities in the steady-convection state
when numerical absorption is introduced at the edge of the
crystal. The parameters are as in Fig. 4, except for the higher
value of f sf  0.03d. (b) Transverse profile of I3. (c) Trans-
verse profile of I3 represented as a contour plot, displaying the
y $ x symmetry built into the model. This symmetry fixes the
direction of convection.

controlled) by the finite beam waist and not by the (pos-
sible) phase mismatch. It appears even in the diffrac-
tionless case sf  0d, provided that convective effects
sb fi 0d are taken into account.3 The physical origin
of self-bending is the convective flow of energy out of
the interaction region.3,15 The inclusion of diffraction
leads to more-complicated transverse patterns and causes
the degradation of PC beam quality. In this section we
present some numerical calculations in which we use the
above-mentioned Gaussian input beams, with j  0 and
s  0.2. The amplitudes C1 and C3 are kept very small.
However, they cannot be set to zero because the process
needs some (noisy) seed to start up. In addition to Gaus-
sians we tried true noisy inputs (using random-number
generators) and obtained the same results.

Figure 4(a) shows the temporal evolution of the to-
tal transmissivity (integrated over the transverse dimen-

(a)

(b)
Fig. 6. Reflectivities R  R0  Rd as functions of the coupling
strength G for b  0. The amplitudes of the Gaussian pump
beams are chosen equal, C2  C4  1, whereas the input of PC
beams jC1j2  jC3j2  e is varied. (a) PW results for different
beam seeds e: solid curve, e  1021; dashed curve, e  1022;
dotted–dashed curve, e  1025; dotted curve, e  1029. The
reflectivities are calculated by both the analytical formulas and
the numerical method (with f  10220). The threshold condi-
tion Gth  2 for oscillation is clearly visible. (b) Reflectivities in
the transverse case for different f and the fixed seed se  1029d:
f  10220 (solid curve), f  1022 (dashed curve), f  1021

(dotted–dashed curve), f  1 (dotted curve). The inset shows
an enlargement of the take-off region for f  0.1 and f  1.
The threshold is now smeared over an interval, and for higher
f it might even not exist.
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sions) at both faces of the crystal. In the transverse case
T0 fi Td. However, the analytical PW formulas R0 
T0yr and Rd  rTd (where r is the ratio of input inten-
sities, r  jC4yC2j2) are still valid. Figures 4(b) and 4(c)
depict the tilt of the beam I3 away from the center x  0,
y  0 of the transverse plane at z  0. The transverse
distribution of the beam represents a breathing-deformed
Gaussian mode. Breathing in this context means a pe-
riodic change of the transverse intensity pattern from a
minimum to a maximum. The performed Gaussian mode
is symmetric with respect to the y  x axis. It keeps the
prescribed symmetry in force. We assume that in this
case the regular shift is caused by nonequal values for
the input seeds of the PC beams.

If the influence of diffraction in increased (higher val-
ues of f), a state of steady convection is reached, with
further spatial widening of the PC beam and the appear-
ance of local maxima in the beam profile (Fig. 5). The
drift of the output profile away from the center is more
pronounced, but eventually it is controlled by the physical
size of the crystal or by some other nonlinear loss mecha-
nism. In the simulations we damp the fields at the edge
of the numerical grid. The drift of interacting fields in
the crystal (or the domains of interaction) to the side of
incident pumps is observed experimentally.4,16

Our results agree with the recent research on two-
dimensional DPCM’s3 only when directional effects are
included and diffraction excluded, and even then only
qualitatively. We conclude that a DPCM with diffraction
is a convective oscillator. However, for strong diffrac-
tion and strong couplings more-complicated spatiotem-
poral phenomena are observed. The reasons for the
discrepancy are probably that the theory in Ref. 3 is lin-
ear (it applies to low-reflectivity levels), in the numerical
results diffraction is neglected, and the theory is derived
for a rather special two-dimensional geometry. It does
not contain transverse Laplacian.

B. Oscillation versus Amplification
The convective flow of energy helps to resolve the contro-
versy between oscillation and amplification. The authors
of Ref. 3 believe that the transport of energy is the mecha-
nism for inhibition of oscillation. In the PW case such a
mechanism is absent.

We believe that, in addition to convection, an important
mechanism is the multimode operation of DPCM when
transverse dimensions are accounted for. The Fresnel
number F determines the maximum number of trans-
verse modes that can oscillate.17 In general, the num-
ber of possible transverse modes scales as F 2. Which
transverse modes oscillate depends on the boundary con-
ditions, coupling strength, and other details of the ex-
perimental setup. Different spatial modes have different
oscillation thresholds. In the transverse case there is no
precise threshold condition for oscillation. When more
than one mode can oscillate, the oscillation does not start
at a particular value of coupling but is turned on gradu-
ally over an interval. A more realistic transverse model
changes the sharp steplike transition at the threshold into
a more gradual continuous transition, with finite (though
large) derivatives. This is clearly visible in Fig. 6, which
depicts the amplification of different beam seeds for the
same value of f sf  10220d and the amplification of the
same seed sjC1j2  jC3j2  e  1029d for different f. The
interval of threshold conditions is seen in Fig. 6(b).

Figure 7 represents the amplification of different seeds
for different values of f on the logarithmic scale. The
shift toward larger couplings and a less steep rise is vis-
ible. Figures 6 and 7 are obtained for b  0. In gen-
eral, b  0 does not mean that the beams are actually
collinear. It means that the ratio of the angle at the
beams’ intersection to the angular spread of the beams
is small and hence neglected. The figures also display
how subtle these effects are when investigated numeri-
cally. Qualitatively, different cases look similar. How-
ever, the existence of an oscillation threshold is evident
in all the cases. As the threshold is approached, critical
slowing down is observed. For small e it takes long times
to achieve convergence. Below threshold the device acts
as an amplifier; above threshold it is an oscillator. Also,
the appearance of convection is evident when transverse
dimensions are accounted for. Having to choose between
a convective amplifier and an optical oscillator in describ-
ing a DPCM, we believe that the appropriate choice is a
convective oscillator.
Fig. 7. Reflectivities versus coupling strength on
the logarithmic scale for different seeds e. The
existence of an oscillation threshold as e goes to
zero is evident. Below the threshold DPCM is an
amplifier; above the threshold the saturation of re-
flectivities is noted. The shift of the threshold and
the reduction of derivatives are shown for three val-
ues of f  f : squares, e  1021; circles, e  1022;
triangles, e  1025; crosses, e  1029. The curves
are polynomial fits through the points, drawn to
guide the eye.



1608 J. Opt. Soc. Am. B/Vol. 12, No. 9 /September 1995 Belić et al.
Fig. 8. Dynamics of the oscillation
switch on, for two values of the transverse
displacement b and for different values
of the coupling strength G. Total reflec-
tivities are presented as functions of time
for different values of the seed e (solid
curves, e  1021; dashed curves, e  1022;
dotted–dashed curves, e  1025; dotted
curves, e  1029). For (a)–(c) b  0.1,
and the device acts as an amplifier. For
(d)–(f ) b  0.01, and the device acts as an
oscillator. In (a) (when the whole curve
for e  1029 is multiplied by 50) and (d)
G  3, in (b) and (e) G  4, and in (c) and
(f ) G  5. Here f  0.
(a) (c)

(b) (d)
Fig. 9. Transverse profiles of the beam I30 for f  0 and e  1025 and for different values of the coupling strength G and of the
transverse displacement b: (a) G  3, (b) G  5. The value of b is given in each figure. The dashed curves are profiles of one of
the pumps (for b  0.1). (c) Spatial transverse distribution of beams I2 and I3 in the crystal for b  0.2 and G  5. A small amount
of seed se  1025d and of diffraction sf  2.72 3 1024d is included. (d) Same as (c) for the total intensity.
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An emerging physical picture concerning amplification
and oscillation is as follows. For f  0 and b  0 the
DPCM is an oscillator. For f fi 0 and b  0 it is a con-
vective oscillator. For f  0 and b fi 0 it is an oscillator
up to a critical transverse displacement bc. Above bc it
is a convective amplifier.3 For f fi 0 and b fi 0 the situ-
ation is not so clear. There seems to exist a critical curve
in the sb, fd plane below which the device acts as a con-
vective oscillator and above which it acts as a convective
amplifier. Owing to critical slowing down, the investiga-
tion of such a critical curve is computationally expensive.

Figure 8 shows the influence of b for f  0. Two val-
ues of b are chosen, one well below the critical value bc

and the other well above the critical value. The value
of the critical transverse displacement depends on the
coupling strength. Figure 9 presents transverse profiles
of the PC beam I30 for different values of the coupling
strength and of the transverse displacement. Also rep-
resented is the transverse distribution of beams in the
crystal during the DPC process [Figs. 9(c) and 9(d)].

C. Transverse Patterns
The inclusion of transverse dimensions leads to rich
spatial and temporal phenomena.10,17 Here we present
(a)

(b) (c)
Fig. 10. (a) Dynamics of the total transmissivities T  T0  Td for f  0.05 and G  3. (b) Contour plot of the transverse profile
of I3 close to the cycle minimum at t  215t. (c) Contour plot at the cycle maximum, t  240t.
(a) (c)

(b) (d)
Fig. 11. Transverse patterns of the PC field I3 at four locations during one cycle in Fig. 10. (a) t  200t, (b) t  205t, (c) t  215t,
(d) t  240t. A periodic rise of the convective pulse is observed. The pulse is absorbed at the edge of the crystal.
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Fig. 12. Comparison with the experimental results of Ref. 2:
(a) Reflectivities R0 and Rd at both sides of the crystal as
functions of the pump ratio r. Filled circles are the experimental
values of R0, and crossed circles are the values of Rd. Dashed
curves are polynomial fits through the experimental points.
Solid curves are numerical curves with G  4 and f  0.121.
(b) Corresponding transmissivities T0 and Td. One of the solid
curves is a fourth-order polynomial fit through the experimental
points for T0, and the other is the corresponding numerical curve.
Dashed curves are the same for Td .

a periodic solution (limit cycle) with a more-complicated
transverse structure. A limit cycle is a periodic solution
that sets up after one Hopf bifurcation in the system.
In this context it is a solution with constant intensity of
any beam and with the phases circling clockwise or coun-
terclockwise in time. It is difficult to speak of phase
conjugation now, because the output profile I3 bears lit-
tle resemblance to the input profile I4. The difference
from the previous example of convection (Fig. 5) lies in
the higher value of the f parameter and in the equal
input pumps sC2  C4  1d. However, the Fresnel num-
ber is still large enough to permit the excitation of more
than one spatial mode. Figure 10 shows the temporal
evolution of the total transmissivity T and the contour
plots of the transverse beam profiles at approximately the
minimum and the maximum of the limit cycle oscillation.
Figure 11 depicts consecutive snapshots of the transverse
profiles at four instants during one cycle. The dynamics
of the cycle proceeds from a weak but complicated pro-
file at the minimum to a strong convective pulse at the
maximum. The pulse gets absorbed at the grid edge,
with the consequent loss of energy, and the cycle repeats.
Such behavior is characteristic of a spatially and tempo-
rally ordered state. We did not observe chaos, neither
temporal nor spatiotemporal, as long as the coupling
constant remained real. This agrees with the conclu-
sions of an earlier report11 on chaos in single-grating
single-interaction-region 4WM. However, that report is
concerned with a PW model.

D. Comparison with Experiment
The inclusion of transverse effects improves the agree-
ment between numerical and experimental results. The
theory based on PW analysis consistently gives too high
estimates for the intensity reflectivity.2 Figure 12 offers
a comparison between numerical and experimental re-
sults. The only fitting parameter here is the value of f.
For f  0.121 a good agreement for R0 and Rd is found.
A more improved agreement could easily be obtained
by inclusion of linear absorption and/or noncollinearity.
However, we prefer the figure as is, as it clearly dis-
plays another tiny but important transverse effect: non-
reciprocity. That is, the transmissivities at the 0 face
and at the d face of the crystal in the transverse case
are not equal because the scattering off PR gratings is
nonreciprocal.

5. DYNAMICAL EFFECTS
Analysis of stable patterns that can set up in PR oscilla-
tors is the first step in an investigation of spatiotemporal
instabilities and the road to chaos through the generation
and dynamics of structural defects.10,17

(a)

(b)
Fig. 13. Temporal signal for an ordered PW state with the
external electric field applied transversely across the crystal
(along the x direction). (a) Transmissivities, (b) phase portrait
of the lower, stable state, showing that indeed it is a limit cycle.
The parameters are jC1j2  jC3j2  1025, jC2j2  jC4j2  1,
G0  4, f  10220, EM  100, Eq  5, ED  1, and E0  4
(arbitrary units).
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Fig. 14. Temporal behavior with the inclusion of transverse
effects. Left column, transmissivity T  T0  Td; right column,
phase portrait of A3 (at z  0) in the center of the beam after
1000t steps. The same parameters as in Fig. 13, except for (a)
f  0.006, (b) f  0.003, (c) f  0.002, (d) f  0.001.

We would like to know under what conditions chaotic
or turbulent dynamics can arise in our model. As men-
tioned, the inclusion of transverse effects does not change
one of the key conclusions of our previous analysis: the
lack of chaos for real couplings. Realistic spatiotemporal
complexity can be introduced in two ways: by applying
an external electric field E0 across the crystal11 and/or by
introducing phase mismatch in the wave interaction.

The first method makes the couplings between the
waves complex,

G  G0
Eq 1 ED

ED

ED 1 iE0

EM 1 ED 1 iE0

, (8a)

h 
ED 1 Eq 1 iE0

EM 1 ED 1 iE0

, (8b)

and promotes multimode competition in the crystal18 ow-
ing to the presence of external electric field E0; the other
violates the Bragg condition and introduces competi-
tion between the grating-writing interference terms A1A4

and A2A3. Here we investigate only the first method.
We further restrict ourselves to an example in which
chaotic behavior is introduced exclusively by the trans-
verse spread of beams. For the characteristic internal
electric fields of the PR crystal ED , EM , and Eq we use
the values consistent with the data obtained for barium
titanate. We also set b  0.

The dynamics of the starting PW state is presented in
Fig. 13. The system starts to oscillate in the fundamen-
tal high-reflectivity mode, which however turns out to be
unstable for this high value of the electric field E0. The
instability grows until the system switches to a stable
low-reflectivity mode.

The situation changes dramatically with the inclusion
of transverse dimensions. Figure 14 shows the temporal
evolution of the transmissivity T and the phase portraits
of A3 for different values of the diffraction coupling f.
T settles onto a fixed value only for large f [Fig. 14(a)].
This state becomes unstable for smaller f and oscillates
irregularly [Fig. 14(b)]. The decreasing values of f cor-
respond to the increasing values of the Fresnel number.
A stationary oscillation is found [Fig. 14(c)], and the final
state represents another chaotic attractor [Fig. 14(d)].

The overall spatiotemporal behavior of these states is
represented in Fig. 15. The stationary state is formed by
a beam profile with two local maxima [Fig. 15(a)]. On re-
duction of f the left peak is suppressed, and the intensity
oscillates irregularly in space and time around the right
peak [Fig. 15(b)]. On further reduction in f a periodic
(a) (b) (c) (d)
Fig. 15. Temporal transverse signal of the field I3sxd after the transients have died away. The parameters are as in Fig. 14.
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(a)

(b)

(c)
Fig. 16. Filamented transverse profiles of I3 (solid curves) and
I2 (dashed curves) at z  0 at different instants: (a) t  1000t,
(b) t  1300t, (c) t  1500t. The simulation corresponds to
that of Figs. 14(d) and 15(d). Note the partial anticorrelation
between the I3 and the I2 peaks.

spatiotemporal state is reached [Fig. 15(c)], where two
intensity peaks oscillate coherently to each other. This
coherence is lost in Fig. 15(d), and a final state of spa-
tiotemporal chaos is formed in which the dynamics of dif-
ferent spatial signals is different. Whereas some vague
transverse spatial correlation of the signal is visible, tem-
porally the signal at any spatial location is chaotic. The
spatial correlation length is reduced in going from the
state in Fig. 15(b) to the state in Fig. 15(d).

Owing to strong diffraction effects the filamentation of
transverse output profiles is noticeable (cf. Fig. 16). The
filamentation of PC beam A3 occurs as a result of sup-
pression of pump beam A2, which by means of the com-
plex PR coupling G introduces a self-focusing nonlinearity
into the wave equations. This effect is clearly visible if
one looks at the intensity I3 in the crystal, as shown in
Fig. 17. Different peaks with high intensities occur and
focus during the propagation through the crystal. The
filamentation of beams becomes stronger for smaller val-
ues of the coupling f (not shown here). Depending on
the values of other parameters, the filaments move trans-
versely or from standing patterns. With an increased
electric field, a complicated dynamics of traveling trans-
verse waves arises. This is consistent with the expec-
tation that more-complex diffraction phenomena should
occur for higher (but finite) values of the Fresnel number.
The system displays an interesting example of transition

(a)

(b)

(c)
Fig. 17. Transverse distribution of the field I3 in the crystal
at different times. (a) t  1000t, (b) t  1300t, (c) t  1500t.
The simulation corresponds to that of Figs. 14(d) and 15(d).
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to spatiotemporal chaos through mode competition, and
we are in the process of quantifying it.

6. CONCLUSIONS
In summary, we have studied transverse and dynami-
cal effects in the DPCM. We find that the inclusion of
the finite lateral beam extension lowers the reflectivities,
bends the beams, and resolves the controversy about the
nature of DPC. It also improves the agreement with ex-
perimental results and accounts for the experimentally
observed asymmetry between the transmissivities of the
crystal along the beam incidence.

In numerical simulations one always needs a finite seed
for the process of start up; however, one can obtain useful
information from the way in which the system behaves as
the seed is getting smaller. Based on such an informa-
tion (and confirmed by theoretical results from Section 2),
we conclude that in the PW approximation the DPCM is
an oscillator with the gain threshold (Gth  2 for equal
pumps). Exponential growth of PC beams is observed
above the threshold for arbitrarily small seeds. Seeds
are needed only as an initial push. Reflectivity levels
attained do not depend on the seed, with marked satura-
tion owing to the depletion of pumps. Below threshold
the reflectivity depends directly on the seed, going to zero
as the seed is diminished.

In our transverse model the DPCM is a convective os-
cillator rather than an amplifier. The gain threshold is
not well defined. However, the existence of an oscilla-
tion threshold for each value of the diffraction parameter
f is evident. Again, below the threshold region the de-
vice acts as an amplifier; different seeds are amplified to
different levels. Above the threshold the reflectivities de-
pend little on the seed, and the signal persists even in the
absence of the seed. When the influence of transverse
displacement is included, for low values of b the device is
an oscillator up to a critical value bc. Above the critical
value of the transverse displacement the device becomes
a convective amplifier.

With the inclusion of transverse dimensions the inten-
sity distributions of PC beams become shifted and asym-
metric. The bending of beams is caused by the convective
flow of energy. Steady convection is observed numeri-
cally and is also evident in the experiment.4,16 Also, the
convergence of the transverse model is faster than that of
the PW model of 4WM.

For strong (real) couplings instabilities are noted, in
that the reflectivity (and transmissivity) does not settle
onto any fixed value but oscillates regularly. However,
in this case the output profile is complicated, and it is
difficult to speak of phase conjugation.

A rich dynamical behavior including spatiotemporal
chaos is observed when a dc electric field is applied
across the crystal. This makes the PR coupling complex.
Then the self-focusing that is due to the nonlinearity is in
competition with the diffraction in the crystal. All these
effects act destructively toward the process of phase
conjugation. We observe competition between different
spatial modes, traveling transverse waves, and defect-
mediated turbulence in our system. Such spatiotempo-
ral instabilities are under current investigation.
APPENDIX A: DERIVATION OF
PARAXIAL WAVE EQUATIONS FOR
DOUBLE PHASE CONJUGATION
We start by writing paraxial wave equations for each of
the two propagation arms:

≠z00 A1 1
i

2k
D00

T A1  QA4 , (A1a)

≠z00 A2 2
i

2k
D00

T A2  QA3 , (A1b)

≠z0 A3 2
i

2k
D0

T A3  2QA2 , (A1c)

≠z0 A4 1
i

2k
D0

T A4  2QA1 , (A1d)

where the directions of the wave vectors k4 and k1 de-
fine the z0 and z00 axes and D

0
T and D

00
T are the corre-

sponding transverse Laplacians. We use the same set
of symbols hAj , Qj to denote the fields and the grating
amplitude in all the cases. For the moment we con-
sider only one transverse dimension and assume that the
angle between the propagation arms is small. The equa-
tion k  2pn0yl denotes the magnitude of wave vector
jkj j in the medium. A degenerate situation is assumed.
One then makes a transformation to the common set of
sx, zd coordinates, where the z axis points halfway be-
tween z0 and z00. Equations (A1) become

≠zA1 1 u≠xA1 1
i

2k
s≠x

2 2 2u≠x≠zdA1  QA4 , (A2a)

≠zA2 1 u≠xA2 2
i

2k
s≠x

2 2 2u≠x≠zdA2  QA3 , (A2b)

≠zA3 2 u≠xA3 2
i

2k
s≠x

2 1 2u≠x≠zdA3  2QA2 , (A2c)

≠zA4 2 u≠xA4 1
i

2k
s≠x

2 1 2u≠x≠zdA4  2QA1 , (A2d)

where u is the (small) half-angle between the incident
beams. Next, the equations are made dimensionless by
introduction of the characteristic longitudinal length (the
crystal thickness d) and the characteristic transverse
length (the beam spot size v0). One obtains

≠zA1 1
u

d
≠xA1 1 ifs≠x

2 2 2ud≠x≠zdA1  QA4 , (A3a)

≠zA2 1
u

d
≠xA2 2 ifs≠x

2 2 2ud≠x≠zdA2  QA3 , (A3b)

≠zA3 2
u

d
≠xA3 2 ifs≠x

2 1 2ud≠x≠zdA3  2QA2 , (A3c)

≠zA4 2
u

d
≠xA4 1 ifs≠x

2 1 2ud≠x≠zdA4  2QA1 , (A3d)

where d  v0yd is the beam’s angular spread and f 
s4pF d21 is related to the Fresnel number F  v0

2yld.
Now z and x are dimensionless numerical variables con-
fined to an appropriately chosen computational domain.
Normally u, d, and f are small, so that the mixed deriva-
tive correction to the transverse Laplacian can be ne-
glected. However, the convective term involving ≠xAj
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cannot be neglected because the quantity b  uyd need
not be small.

The extension to two transverse dimensions is easy.
Assuming that the wave vector of the grating K̂ (lying in
the transverse plane) makes an angle c with the x axis,
the directional derivative becomes K̂ ? =T  cosscd≠x 1

sinscd≠y . We pick c  py4 and absorb the
p

2 factor
into the b. Likewise the transverse Laplacian becomes
≠x

2 1 ≠y
2.

One should note that the electric fields formed by use
of slowly varying envelopes carry additional phases of the
form expsikz0 d and expsikz00 d. On transformation and
scaling of the coordinates, the optical phase of various
beams acquires the form kdsz 6 udxd. This phase takes
into account the noncollinear propagation of two pairs of
beams. In the spirit of paraxial approximation the sec-
ond term in the optical phase can be neglected. However,
when instabilities and traveling transverse waves are dis-
cussed, the second term must be included in the analysis.

APPENDIX B: PLANE-WAVE SOLUTION OF
FOUR-WAVE MIXING EQUATIONS
In the steady state, the expression for Q (with h  1) from
Eq. (4) is included in Eqs. (1), with b  0 and f  0, and
the resulting equations are solved as a system of first-
order ordinary differential equations. The details of the
solution are provided in Ref. 14.

For G real the system of Eqs. (1) is linearized with the
following transformation of the independent variable:

Q0 
GjQj

I
, (B1)

where the prime denotes the derivative along the propa-
gation direction z. The solution is then given by

A1  C1 cossQ 2 Q0d 1 C4 sinsQ 2 Q0d , (B2a)

A4  C4 cossQ 2 Q0d 2 C1 sinsQ 2 Q0d , (B2b)

A3  C3 cossQd 2 Qd 1 C2 sinsQd 2 Qd , (B2c)

A2  C2 cossQd 2 Qd 2 C3 sinsQd 2 Qd , (B2d)

where C1-4 are the given boundary values of the four
fields: A1,4sz  0d  C1,4 and A2,3sz  dd  C2,3. Using
this solution, one finds an expression for the grating am-
plitude:

2jQj  aI sins2Qd , (B3)

where a is a constant to be determined from the boundary
conditions. For a transmission grating process the total
intensity I is also constant, I  jC1j2 1 jC2j2 1 jC3j2 1

jC4j2, so Eq. (B1) is easily integrated:

tansQd  tansQ0dexpsaGzd . (B4)

To obtain a complete solution one must determine Q0

and Qd in terms of boundary values. To this end, us-
ing the expressions for jQdj 1 jQ0j and jQdj 2 jQ0j from
Eqs. (B3) and (B4), one forms a system of three algebraic
equations (for Qd, Q0, and a). The solution is of the form

tansud 
q

b 2 v
, (B5a)

tanssd 
qb

wb 2 c
, (B5b)

b sinsud  aI sinssd , (B5c)

where u  Qd 2 Q0, s  Qd 1 Q0, q  C2C3 1 C1C4 1 c.c.,
b  aI cothsaGy2d, v  jC4j2 2 jC3j2 1 jC2j2 2 jC1j2, w 
jC4j2 1 jC3j2 2 jC2j2 2 jC1j2, p  C2C3 2 C1C4 1 c.c., and
c  pq 2 wv. The self-consistency requirement on this
solution leads to an equation for a:

b2q2 1 swb 2 cd2  a2I 2fq2 1 sb 2 vd2g . (B6)

Equation (B6) must be solved numerically. However, a
good approximate solution is obtained if one notes that a
should lie between 21 and 1. In fact, a  0 is always
a (trivial) solution of Eq. (B6). For sufficiently large G

(positive or negative) one obtains a nonzero (positive or
negative) value for a. This defines the coupling strength
threshold for oscillation. Assuming aG to be small, one
obtains b  2IyG and

a 
1
I

"
4I 2q2 1 s2Iw 2 cGd2

sqGd2 1 s2I 2 vGd2

# 1/2

. (B7)

A few numerical and approximate solutions are presented
in Fig. 2. Having found a, tansQd 1 Q0d, and tansQd 2

Q0d, one can easily determine Q0 and Qd.

APPENDIX C: NUMERICAL
ALGORITHM FOR PHOTOREFRACTIVE
WAVE-MIXING EQUATIONS
To the spatial problem at hand we apply a simple spectral
method. We consider just one of Eqs. (1) and one trans-
verse dimension x, as an example. The equation is first
Fourier transformed:

s≠z 1 ibk 2 ifk2dÃ1szd  gQA4szd , (C1)

where k  kx denotes the transverse part of the wave vec-
tor and the tilde denotes the spatial Fourier transform,
which is easily achieved by use of a fast-Fourier-transform
algorithm. In Eq. (C1), only the dependence on the
relevant marching variable szd is retained. The initial
partial differential equation is thus transformed into a
system of first-order ordinary differential equations, with
as many equations as there are Fourier components.
These equations cannot be solved exactly, because of the
convolution gQA4. However, a formal solution can be
written down:

Ã1szd  expfisfk2 2 bkdzg

3

(
Ã1s0d 1

Z z0

0

gQA4sz0 dexpf2isfk2 2 bkdz0 gdz0

)
(C2)
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or, if integration is performed over a dz step:

Ã1sz 1 dzd  expfisfk2 2 bkddzgÃ1szd

1 expfisfk2 2 bkdsz 1 dzdg
Z z1dz

z

gQA4sz0 d

3 expf2isfk2 2 bkdz0 gdz0 . (C3)

The influence of the convection term b is now clear: It
leads to a lateral shift of the fields. Numerically this
equation can be treated to different orders of accuracy
and algorithmic sophistication. We opt for the simplest
and computationally least expensive approximation. We
assume that the term gQA4 does not change appreciably
across the (presumably small) integration step. In doing
so, we keep in mind that DPC is a high-gain process.
In such a process saturation is easily achieved, and the
region of rapid change of fields is localized inside the
crystal. Hence the approximation appears to be better
than its linear dz dependence (cf. Fig. 3). Equation (C3)
is now integrated:

Ã1sz 1 dzd  expfisfk2 2 bkddzgÃ1szd

1 igQA4szd
1 2 expfisfk2 2 bkddzg

fk2 2 bk
, (C4)

and the field A1sz 1 dzd advanced for a dz step is deter-
mined by an inverse spatial Fourier transform. In this
manner the crystal (spatial) integration loop is formed:
the fields A1 and A4 advance from z  0, starting with
appropriate initial profiles (usually Gaussian), and like-
wise A2 and A3 fields “advance” backward from z  d  1.
Along the way, the values of total intensity I and qstd 
A1A4 1 A2A3 are collected, to be used in the temporal
integration loop.

Once the crystal integration loop is completed and the
relevant quantities are calculated, one advances the grat-
ing amplitude for a time step dt. Although one can think
of more-sophisticated algorithms, it is clear that Eq. (4)
can be treated similarly to the spatial equation in the in-
verse space. As a first-order ordinary differential equa-
tion, it can be formally integrated:

Qstd  exp

√
2

ht
t

!"
Qs0d 1 G

Z t

0

qst0 d
I st0 d

exp

√
ht0

t

!
dt0

t

#
.

(C5)

Assuming that qstdyI std is approximately constant across
the (small) time interval, one obtains

Qst 1 dtd  exp

√
2

hdt
t

!
Qstd

1 G
qstd

hI std

"
1 2 exp

√
2

hdt
t

!#
. (C6)

This formula is easily discretized. Again, the accuracy
is low (linear in dt). However, as mentioned above, the
temporal change of q (and I) is rather gradual, and by
an appropriate choice of dtyt satisfactory results are ob-
tained. (In our computations dtyt is always less than
0.1. The parameter h, if real, is of the same order of
magnitude.)
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