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We describe a numerical algorithm for the evaluation of the electromagnetic-field distribution in a loaded unstable
resonator. The storage requirements are minimized so that the resulting code can be used for large Fresnel num-

bers. Edge diffraction is accounted for by a recently developed continuous Fourier-transform algorithm. Use is

made of a new gain formula that incorporates the effects of interference between the forward and backward waves.
The present method yields improved accuracy over previous methods and enables one to perform calculations for
systems with large Fresnel numbers on a medium-sized computer. Numerical results are presented for a loaded
confocal unstable resonator to study the effect of the saturated gain on the mode profile. An important conclusion
is that the saturated gain does not alter the number of peaks and their relative positions in the intensity distribu-
tion. This supports the simplified view that these features arise from edge diffraction and that the saturated gain
amplifies each peak by a different amount depending on the peak intensities.

1. INTRODUCTION

In recent years unstable resonators have attracted consider-
able attention'- 32 both theoretically and experimentally for
their use in high-gain lasers. The chief advantage of unstable
resonators lies in their offering a large mode volume, adjust-
able diffraction output coupling, and discrimination against
higher-order transverse modes. Since these resonators have
high diffraction losses, they are useful whenever the gain per
round trip is large and have been used in various high-power
laser systems, such as CO2 and CO gas lasers, Nd:glass lasers,
YAG solid-state lasers, and chemical lasers.3 -9

Unstable resonators have an inherent complication in the
theoretical analysis of the electromagnetic field distribution.
Since the output is taken across a mirror, diffraction taking
place at the sharp mirror edges introduces rapid transverse
variation in the optical field. Further, the frequency of the
spatial oscillation increases with the resonator Fresnel number
F. In the case of an empty unstable resonator, asymptotic
methods have been developed to obtain the field distribution
for large F.10"'1 The mode structure of the resonator is de-
termined in terms of two parameters, the round-trip magni-
fication M and the Fresnel number F, and appears to be well
understood for empty resonators with square as well as cir-
cular mirrors., 1 "0-17

An evaluation of the electromagnetic-field distribution in
a loaded unstable resonator with a saturated gain medium
requires a numerical solution of the nonlinear paraxial-wave

equation.1 3 2 For the case of rectangular geometry, a mesh
of N2 points, where N is the number of mesh points in a
transverse dimension, is chosen to represent the optical field.
For a resonator with the Fresnel number F, the value of N
should be larger than 27rF in order to resolve the rapid oscil-
lations of the optical field.19 Finite-difference schemes are
ruled out because of unrealistically large computer-memory
and -time requirements. Under certain conditions the thin-
sheet gain approximation is found to be adequate8' 33: Here
the continuous gain medium is approximated by a series of
thin gain sheets (see Fig. 1) with free propagation between,
which is accomplished by a fast-Fourier-transform (FFT)
algorithm.'9 Even then the core requirements of the com-
puter code are stringent, and the method has been used in the
past for small values of F.18"19 For large F, the asymptotic
approach of Horwitz10 has been extended to include the gain
in a loaded resonator.2 4 However, the results are applicable
only when gain has a slow spatial variation and is intensity
independent. 2 3 24 Smith2 8 has included the effect of gain
saturation within the framework of an asymptotic analysis
valid for large F. Recently Oughstun29 ,31 carried out a nu-
merical analysis of the resonator modes for the active and
passive cavities.

In this paper we present the details of a computer code
whose modest storage requirements allow it to be run on a
medium-sized computer for moderately large values of F.
Our nonasymptotic approach is similar to that of Sziklas and
Siegman19 with several significant modifications. The for-
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Fig. 1. Illustrating the coordinates and geometry of a positive-branch
confocal unstable resonator. A cross-section view of the y = 0 plane
is shown. Two mirrors at z = 0 and z = d are square-shaped spherical
mirrors with radii of curvature b and b2, respectively. The gain
medium between planes z = d and z = d 2 is divided into a number
of equispaced segments, and the gain sheets are situated midway on
each segment. In the geometrical-optics approximation the light
beam expands to a width of Ma, where M is the round-trip magnifi-
cation. The light that spills over the mirror edges at z = 0 is the
resonator output.

2. FIELD EQUATIONS IN THE PARAXIAL
APPROXIMATION

We consider an unstable resonator, shown schematically in
Fig. 1, with its axis along the z axis, bounded by two square-
shaped spherical mirrors at planes z = 0 and z = d. The gain
medium is contained between the planes z = dl and z = d2 >
d, and is assumed to be stationary. The electromagnetic field
in the resonator is assumed to be monochromatic and linearly
polarized (corresponding to a single longitudinal and
transverse mode),

E(r, t) = Re[fiE(r)e-iwt], (2.1)

where i is a transverse unit vector and w is the laser frequency.
The complex electric field E(r) satisfies the scalar Helmholtz
equation

(V 2 + k2 )E(r) = ikg(IEI 2 )E(r), (2.2)

where k = v 7 Z/c and KL is the background linear dielectric
constant. The nonlinear saturated gain g(JEj 2) is obtained
by modeling the gain medium as a homogeneously broadened
two-level atomic system 3 6 and is given by37

ward and backward waves are propagated simultaneously,25

and the gain is calculated whenever needed instead of storing
it at various gain sheets. We have developed the continu-
ous-Fourier-transform algorithm to account for edge dif-
fraction.26 34 35 With the implementation of the CFT and the
use of a new modified gain formula, 2 7 our numerical results
are expected to be more accurate than previous calcula-
tions. 19

The plan of the paper is as follows. In Section 2 we obtain
the coupled equations for the forward and backward waves,
starting from the wave equation, in the paraxial approxima-
tion. These equations take into account mutual interference
of the forward and backward waves in a standing-wave reso-
nator, an effect important 2 7 for stationary gain media. The
gain medium is modeled by a homogeneously broadened
two-level atomic system. Section 3 describes the use of the
Fourier-transform technique for solving the nonlinear par-
axial-wave equation when the thin-sheet gain approximation
is made. The errors associated with the latter approximation
are analyzed, and a procedure is described to minimize these
errors. The FFT method, although appropriate for the cal-
culations in the gain medium itself, cannot accurately model
diffraction at the sharp output mirror edges. We discuss a
more accurate approach briefly in Appendix A and refer the
reader to recent work34' 35 for details. The boundary condi-
tions appropriate for an unstable resonator are also discussed
in Section 3, where the results obtained in the geometrical-
optical approximation are described. Section 4 deals with the
numerical details of the procedure. By simultaneously in-
tegrating the forward and backward waves25 in the unsta-
ble-resonator cavity, we obtain a substantial reduction in
memory requirements while slighly hastening convergence.
The numerical results obtained for both empty and loaded
unstable resonators are presented in Section 5. These results
are discussed, and their implications for an actual laser system
are mentioned.

(2.3)gE1+) go(1 + Q)whr sthll-s + Q2 + E(r)2/Ea2'

where go is the small-signal on-resonance gain:

Nap 2 Dw
go = Np'D~w - ;

,If;;LhYab C (2.4)DW = Xa Xb
'Ya 'Yb

E = habiP is the saturation electric field, and Q = (w -
Wab)/Yab is the detuning parameter. In Eq. (2.4), Na is the
atomic density, p is the transition atomic-dipole moment, and
Dw is the normalized population difference that would be
maintained by the pumping mechanism if radiation were in-
hibited. Here a and b are the pump rates (per atom) into
the upper and lower states, respectively; a and Yb are the
corresponding decay rates that are due to spontaneous emis-
sion; ab = Wa - b is the atomic frequency difference; and
'Yab is the associated homogeneously broadened line width.
Further, mks units are adopted, and eo is the vacuum per-
meability. Our algorithm applies, of course, to other non-
linear gain functions as well.

In a standing-wave laser resonator, reflections at the mirrors
introduce left-going and right-going waves. The nonlinear
denominator in Eq. (2.3) will cause a coupling to all waves of
the form exp(inkz), where n is any odd integer. The most
general solution of Eq. (2.2) is assumed to be of the form

E(r) =Es T Vn(r)einkzI
odd n

(2.5)

where the dimensionless Fourier amplitudes 6n (r) are slowly
varying functions of r. When Eq. (2.5) is substituted into Eq.
(2.2) and Eq. (2.3) is used, one obtains

Z einkz [k2(1 -n
2)4 + 2ink -f + lfn + V2

n I a~~~z 8Z2 + In

=ikgo(1 + iQ) ,meikmz 1 + Q2 + 4peipkz

(2.6)

where V
2 (a2 /0X2

+ 2 /0y 2
) is the transverse part of the

Laplacian v2 . By taking the appropriate Fourier component
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of the right-hand side of Eq. (2.6), one obtains an infinite set
of coupled equations for various 4',,. In the paraxial ap-
proximation, 8a4/8z << k, and one neglects a2 /i,,/3z2 in Eq.
(2.6). Further, for I 1, the left-hand side of the above
equation has a coefficient of order k 2 , which makes corre-
sponding 4in small. We can obtain an estimate of these terms
by neglecting all but the k 24n term on the left. Thus we find
that

Il 5 1.

Since the gain per unit wavelength is always quite small
(-10-4 or less), it is permissible to neglect all terms with In
> 1 and thereby obtain a truncated set of two coupled equa-
tions.

In the paraxial approximation, the right-going wave {R

4' and the left-going wave /L -/-l satisfy the following
equations 2 7:

(2ik z VJ TR =ikgROR, (2.8)

-2ik a + VT) 4,L = ikgL L, (2.9)

go(1 + i2) a -(a 2 - b2)"2]
9' = 1 -

(a2 - b 2 )1/2 21 t'j 2

a = 1 + 2 + IRI 2 + ILI 2, b = 21

(A = R, L),

(2.12)

and with boundary conditions appropriate for a Fabry-Perot
resonator.41 42 This permits one to evaluate the interference
effects on laser output and thereby optimize the design pa-
rameters to obtain maximum power.

3. SOLUTION TECHNIQUE

A. Thin-Sheet Gain Approximation
Finite-difference schemes for numerical solution of the cou-
pled nonlinear parabolic equations (2.8) and (2.9), although
desirable, are not practical because of large core and time re-
quirements. An alternative approach is to approximate the
continuous gain medium by a series of equally spaced thin
sheets at which the complex gain is assumed to be lumped.18
This is referred to as the thin-sheet gain approximation.33

The region between two gain sheets has no gain; here the fields
are propagated by using the Fourier-transform method. A
FFT algorithm may be used for this purpose, and a substantial
saving in time is achieved over finite-difference methods. In
this subsection we describe the procedure and analyze errors
involved in making the thin-sheet gain approximation. The
error analysis was previously performed in the context of beam
propagation in the atmosphere.4 3 44

Equation (2.8) can be rewritten as

(2.10)
klLI (2.11)

Equation (2.10) represents the modified gain formula. Note
that the right- and left-going waves experience different gain
because gR gL. The usual saturation formula'8 2 2 is ob-
tained when b = 0 in Eq. (2.10) and is given by

go(1 + i)
9R= =L 1 + Q2+ I 4RI2 + 'LI2

The gain modification in Eq. (2.10) arises from spatial hole
burning resulting from population modulation [in the form
of exp(2ikz)] that occurs because of interference between the
forward and backward waves. If atoms move because of
diffusion, thermal motion, or gas flow, population modulation
would be partially washed out. The atoms would have to
move more than one-half wavelength during the time the field
is reflected back from a mirror for spatial-hole-burning effects
to be ignorable. In this case it is more appropriate to use Eq.
(2.12). However, for a 10-,um laser with a 3-i cavity length,
a speed of 103 m/sec would be needed to wash out hole burn-
ing. In Section 5 we compare the field distributions obtained
using Eq. (2.10) and the conventional choice, Eq. (2.12).

For the special case of a completely symmetric Fabry-Perot
resonator with I 4PL"1 2 = 1R'RI 

2 _IT/ 2 and with Q = 0, Eq. (2.10)
becomes

R= = [1 - (1 + 2IT) 1/2].
IT

(2.13)

Equation (2.13) was first obtained for gain saturation in laser
systems with stationary atoms.38 Recently Eq. (2.10) has also
been used to incorporate standing-wave effects in optical
bistability, 39 -4 ' where the nonlinear medium inside a
Fabry-Perot cavity absorbs the incident radiation. Further,
it is possible to integrate analytically Eqs. (2.8) and (2.9) with
the gain formula Eq. (2.10) in the plane-wave approximation

d = [A + B]IPR, (3.1)

where

2 1
2k T, 29 (3.2)

Let us first consider the special case when B is independent
of z. Equation (3.1) can be integrated formally to yield

hR(Z) = U(Z)WR(0), U(z) = exp[(A + B)z], (3.3)

where dependence on x and y is understood. Note that the
operators A and B do not commute. In previous work19 on
loaded unstable resonators the field was first free-propagated
between gain sheets and then multiplied by the gain at the
sheet. This amounts to the approximation

U(z) eAzeBz. (3.4)

An application of the Baker-Hausdorff theorem shows that
the errors depend on the commutator [Az, Bz] and are of
second order in z. Better accuracy is obtained if, instead of
relation (3.4), one uses the relation

U(z) = exp(Az + Bz) = exp(1/ 2Az)exp(C)exp(/ 2Az),

(3.5)

where

z3 Z3
C = Bz - [A, [B A]]- [B,[B.A]]+.... (3.6)

24 12

Thus we see that the single commutators have vanished, and,
if the double commutators are neglected, C Bz, and the er-
rors are of third order in z. The meaning of Eq. (3.5) is that,
in going from 0 to z, the gain sheet should be situated at z/2;
one should first propagate from 0 to z/2 and then apply the
overall gain at sheet and propagate from z/2 to z. In order to
comply with this requirement, it is necessary that all the gain
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sheets have an equal separation h from one another. Further,
the first and the last sheets should be at a distance h/2 from
the gain medium boundaries.

The above analysis can readily be extended to incorporate
the z dependence of the gain operator B(z). For details we
refer to App. B of Ref. 44. The leading error term now de-
pends on the commutator [A, B/Oz]. One uses the pre-
scription

AR(Z) exp('/2Az)exp [ S B(z')dzi exp(/ 2Az) tR(0).

(3.7)

The fractional error e in propagating between two gain sheets
(z = h) is given by

[A, aB/az]z 2 hf = =~- [V2,B]
4B 8kB TA]

where Eqs. (3.2) have been used and AB = h(aB/Oz) is the
change in B over the interval h, the separation of the gain
sheets. We use

[0, 2 1 " 2 A a a 6A
[x

2 ] x2 O z ax 62

(3.9)

where 6 is a transverse distance over which the gain function
B changes. Using Eqs. (3.2), (3.8), and (3.9), we obtain

e3 h Ag_ 3 [hi ah 1 1 1 t1gR
4k32 gR 4 V1/\ / I 27rF, gR

(3.10)

where F = a 2/Ad is the resonator Fresnel number, a is the
output-mirror size, and d is the resonator length. Our crite-
rion given by relation (3.10), is related but not equivalent to
the one given by Milonni. 3 3 As F increases, the fine-grained
ripples increase, in spatial frequency. Thus (a/6) increases
also, and, for the same accuracy to be maintained, h must be
reduced as F increases, especially when sharp edges are
present.

In the thin-sheet gain approximation the integration of Eqs.
(2.8) and (2.9) proceeds as follows. The gain medium is di-
vided into M equally spaced segments of length h. The gain
sheets are situated midway between these segments (see Fig.
1). Let /R (z) be the field at the beginning of a segment. The
field is free-propagated by a distance h/2 to arrive at the
left-hand side of the gain sheet, where, from formulas (3.2) and
(3.7), it is given by

OR( "(Z + h/2) = exp [4k VT] O6R(Z). (3.11)

At the gain sheet the field 'PR (0) is multiplied by the integrated
complex gain to obtain its value at the other side of the
sheet,

'R (+)(Z + h/2) = exp i/2 f gR(z')dz'l R " (Z + h/2).

(3.12)

The field is then free-propagated by h2 to arrive at the be-
ginning of the next segment,

OR(Z + h) = exp i- V2 R(+) (Z + h/2). (3.13)
4k

The three steps indicated by Eqs. (3.11)-(3.13) are repeated
M times to complete the propagation in the nonlinear medi-
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um. A similar procedure is followed for the left-going wave
given by Eq. (2.9).

The integration indicated in Eq. (3.12) is approximated by
the trapezoidal rule,

Sz+h g h
Xz gR (Z')dz' - [gR (z + h ) + gR (z)]* (3.14)

Hcwever, the saturated gain gR (z + h) depends on the values
of AR and O L at z + h that are not known at the gain sheet at
z + h/2. It can be calculated, of course, in a self-consistent
manner, but the previous calculations make no attempt to do
this.'18"9 Instead, the integral in Eq. (3.12) is approximated
by the midpoint formula

fz+h gR(z')dz' = hgR(z + h/2).
(3.8) (3.15)

To avoid iterations, a further approximation is made by using
AR (-) to compute gR at the gain sheet.

B. Fourier-Transform Method
Free-space propagation indicated in Eqs. (3.11) and (3.13) is
carried out using the Fourier-transform technique.'9 We take
the two-dimensional Fourier transform of R(y, z):

kR(kz, ky, z) = FT['R(x, y, z)]
= Si PR(x, y, z)exp[i(kxx + ky)]dxdy

(3.16)

Equation (3.11) is rewritten as

6R (- + h/2) = (FT)-' exp 4k (kX2 + ky2)

(3.17)

where FT and (FT)-' denote the Fourier-transform and the
inverse-Fourier-transform operations, respectively. Under
certain conditions these operations can be approximated by
discrete Fourier-transform operations. The integrals in Eq.
(3.16) are then replaced by a double series:

N N [2ri(km + In)
g'mn __ Z exp O h ' l.

k=1 1=1 tN I
(3.18)

If the infinite series can be truncated with reasonable accu-
racy, using a sufficiently large N, the sum may be performed
by using a FFT algorithm.45 ' 46

Sziklas and Siegman' 9 have derived conditions under which
the Fourier integral is well approximated by a finite Fourier
series. These conditions were obtained in the context of a
diverging beam transformation, which reduces the number
of points required to sample the electromagnetic field ade-
quately. Since we have not availed ourselves of the diverging
beam transformation, it is instructive to consider how these
conditions are modified when the curvature of the mirrors is
not transformed away. We consider a uniformly illuminated
spherical mirror of half-width a on which the field after re-
flection is given by

O(x, 0) = exp(i7rCx 2), (3.19)

where C = -2a 2 /XB, with B the radius of curvature. The
field at a distance D in the paraxial approximation is given
by

X (FT) OR Wz,
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'P(x, D) = (-iF)'! 2 exp(i7rFlx - 2 )'P(y, 0)dy,

(3.20)

where F is the Fresnel number of the calculation, i.e., F =
a 2/XD. Outside the geometrical shadow of the beam the in-
tegral, Eq. (3.20), may be approximated using the formula

ibexp[-itf(y)]dy = i exp[-itf(b)] exp[-itf(a)] 
exfa t ny tlI f'(b) f'(a)

(3.21)

which yields for the intensity at z = D

(X,1 4 2I lc42(F+ C-FX)2I (F+C+FX)2

+ 2 cos(4rFx ] 322
(F + C + Fx)(F + C - Fx) (

Integrating this expression from G to and dropping the
cosine term for large F, we find that the fraction of energy lost
to the region IxI > G is given approximately by

1 G
l(G) - 27r2F G2

- 1 - 2D/B (3.23)

When the mirror is plane, B = and G >> 1, we find that

cl(G) , (3.24)
2'ir2 F G -1I

which leads to a condition on the guard-band ratio

G > 1 + 2r 2F (3.25)

that is identical to Eq. (16) of Ref. 19. In our simulations for
a resonator of length d = D, D/B = 0.6, and G > 4, so that the
difference between condition (3.25) and the more complex
condition obtained from approximation (3.23) is negligible.
However, for higher curvatures, the simpler condition (3.25)
may not be sufficiently severe.

In a similar manner we obtain the energy aliased into higher
frequencies. The Fourier transform of VI(x, 0) in Eq. (3.19)
is given by

O(v) = 3' exp(21rivx)exp(i7rCx 2)dx. (3.26)

For frequencies v > C the phase is stationary outside the in-
terval of integration: We use Eq. (3.21) and find that

1 1 1 2 cos(47rFv)
^(v) = . ~ + + I.4T-2C2 (1 - V/C)2 (1 + v/C) 2 (1 - V2 /C 2 )

(3.27)

The energy aliased into modes with frequencies greater than
vmax is obtained by integrating this expression from vmax to
, and the fractional loss is given by

1 1
E2 = (3.28)

27r2Vmax 1 -- (C/Vmax)2

where the rapidly oscillating term in condition (3.27) has been
dropped. For a Fourier transform with Np points, we have
vm. = Np/4G. In Eq. (3.26) C = 2FD/B, where D is the res-
onator length and B is the mirror curvature. In order to keep
the aliasing error below E2, therefore, Np must satisfy

Np > - [1 + (1 + 16C7r 2E2 )1/
2
].

7r2 2
(3.29)

Again, for the case of a plane mirror (C = 0), it reduces to the
condition given in Ref. 19.

C. Edge Diffraction
In unstable resonators the optical beam emerges from around
the edges of a sharp output mirror. The resulting edge dif-
fraction of the reflected wave introduces fine ripples into the
electromagnetic-field distribution inside the resonator. As
the Fresnel number increases, these rapid transverse oscilla-
tions in the field decrease in amplitude but increase in fre-
quency. Accordingly, when the free-space propagation of the
reflected edge-diffracted wave is performed using FFT
methods, a large number of points is required to obtain even
moderate accuracy. Sziklas and Siegman' 9 have obtained a
condition on N' required to sample the fine-grained ripple at
the output mirror that arises from edge diffraction on the
opposite edge of the input mirror. They obtain

N > 4G(G + 1)F = Np + 8FG, (3.30)

where Np satisfies approximation (3.29) and the second
equality follows from condition (3.25) and the choice el = 2-

This criterion is far more stringent than condition (3.29). As
was noted in Ref. 19, it is equivalent to the requirement that
the transform be sampled accurately even in regions where
the field is small. Lax et al. 26 and Lax and Agrawal34 have
proposed an algorithm based on a continuous Fourier trans-
form (CFT) to remedy this deficiency. Recently, Coffey and
Lax3 5 developed a more efficient CFT algorithm. For com-
pleteness the details are presented in Appendix A. In Section
5 we compare the converged resonator field distribution ob-
tained using the FFT with that obtained with the CFT, the
distinction arising only at the sharp mirror: Free-space
propagation inside the gain medium is effected by using the
FFT in both cases.

D. Boundary Conditions
Equations (2.8) and (2.9) describing the propagation of the
forward and the backward waves are solved subject to the
boundary conditions appropriate for an unstable resonator.
The geometry of the resonator is shown in Fig. 1. The output
mirror at z = 0 and the large mirror at z = d have radii of
curvature b and b2, respectively; R, and R 2 are the corre-
sponding intensity-reflection coefficients. When the light
beam reflects from any of the two mirrors, the finite curvature
of the mirror introduces a space-dependent phase shift.
Assuming that the radii of curvature b, and b2 are large in
comparison with the beam width, the boundary conditions at
the left-hand mirror at z = 0 become

tJ'R(x, y, 0) = -V#ThL(x, y, 0)exp[-ik(x2 + y 2)/b,]
(3.31)

for IXI, IYI < a and zero otherwise. R is the mirror reflectivity,
and the finite size of the output mirror has been taken into
account. The field IL(X, y, 0) for IxI, IYI 2 a is the laser
output and does not get reflected into the resonator. The
boundary condition at the right-hand mirror at z = d is

'FL(x,y, d) =-/NITR (x,y, d)
X exp(2ikd)exp[-ik(x 2 + y2)/b2],

(3.32)

where the mirror is assumed to be large in comparison with
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the beam dimensions. It will be assumed that the laser fre-
quency w is tuned to the cavity and that

kd = m7r. (3.33)

E. Geometrical-Optics Approximation
A qualitative understanding of the resonator behavior can be
obtained in the geometrical-optics approximation.' In this
approximation the diffraction is neglected, and only the
geometrical losses arising from beam spreading are incorpo-
rated. A useful parameter in such an analysis is the round-
trip magnification

M = MRML, (3.34)

where MR and ML are the linear magnifications of the right-
and left-going waves, respectively. Applying the imaging
formulas of geometrical optics to the resonator configuration
of Fig. 1, one obtains

MR = g1[1 + (1 - /gg 2 )1/2] (3.35)

ML = 2[1 + (1 - 1/g9g2)1/2], (3.36)

where

gi = 1 _ d, i = 1, 2, (3.37)

and is not to be confused with the gain gR and gL introduced
in Section 2. For a positive-branch confocal unstable reso-
nator' (see Fig. 1), often employed in actual experimental
setups, b < 0 and b2 > 0, and b + b2 = 2d. Using Eqs.
(3.34)-(3.37), it is easy to verify that ML = 1 and M = MR =
Ib2/bl.

The empty-resonator modes are characterized by the
round-trip magnification M and the Fresnel number (defined
with respect to the small mirror)

F = a 2/Xd = ka2/(2urd), (3.38)

where a is the half-width of the small (output) mirror and X
is the radiation wavelength. The equivalent Fresnel number
Feq and the collimated, or tube, Fresnel number FT are given
by

Fcq = /2(M - )F, FT = M 2 F. (3.39)

In the geometrical-optics approximation the field equations
(2.8) and (2.9) are written in terms of the intensity and the
phase variables using it, = N/vexp(iS)(, = R L); all
transverse variation in I and S is neglected. The ray slopes
related to TS, are found to be independent of z, and their
values depend on the magnifications MR and ML. Using Eqs.
(2.8) and (2.9), the intensities IR and IL are found2 7 to satisfy
the following set of two coupled first-order nonlinear differ-
ential equations:

dIR + 2 [ (MR-1)JIR = Re(gR)IR, (3.40)

dIL + 2 (ML-1)(- IL -Re(L)IL,
dz + (ML -1)d-zj

(3.41)

where the factor of 2 in the second term of Eqs. (3.40) and
(3.41) is absent for a two-dimensional strip unstable resonator.
For the case of an empty resonator, gR = gL = 0, Eqs. (3.40)
and (3.41) are readily solved. In a round trip the intensity

decreases by a factor of M- 2 (M-1 for a strip resonator), and
the geometrical power loss per round trip that is due to beam
spreading is (1 - M-2). Note that it is independent of the
Fresnel number F given by Eq. (3.38). The power loss ob-
tained by a numerical solution of Eqs. (2.8) and (2.9) is found
to be less than the geometrically predicted loss and shows an
intricate dependence on F.1

To illustrate the effects of mutual gain interference on IR
and IL, Eqs. (3.40) and (3.41) were solved numerically. 2 7 It
was found that even in the geometrical-optics approximation
the interference of the right- and left-going waves modifies
the output intensity by more than 10%.

In Section 5 the effects of gain interference on the output
intensity and on the transverse variation of the cavity fields
are studied in detail. The geometrical-optics solutions pre-
sented here serve as a guide and provide a qualitative com-
parison with the numerical results. We have also used the
solution to Eqs. (3.40) and (3.41) to provide starting fields for
the full three-dimensional simulation. This approach can
enhance the convergence of the iteration procedure and save
computer time.

4. NUMERICAL PROCEDURE

In this section we describe the procedure for the numerical
solution of Eqs. (2.8) and (2.9) based on the methods of Sec-
tion 3. Our aim is to develop a computer code with minimum
core requirements applicable to resonators of large Fresnel
number F.

The calculational procedure adopted in the past18"19 solves
one of the two equations for each half round trip. Equation
(2.8) or (2.9) is used when the beam is propagating to the right
or to the left, respectively. The calculation of the saturated
gain, Eq. (2.10), requires the knowledge of RI 2 and I TLI 2
simultaneously. To this end, the intensity I TLI 2 (I 'FRI 2) is
saved in core at the gain sheets when the field 4FR (L) is
being propagated. The core requirements for such a proce-
dure are large and increase with the number of gain sheets.
The method was used for small values F 1.

It has been pointed out2 5 that a substantial reduction in
memory is achieved when Eqs. (2.8) and (2.9) are integrated
simultaneously. Further, the storage requirements are in-
dependent of the number of gain sheets, which is chosen to
satisfy the criterion given by expression (3.10). The numer-
ical code that we have developed solves the forward and the
backward waves simultaneously and can be used for large
values of F.

On the backward propagation of the left- or right-going
wave, the corresponding optical field experiences loss instead
of gain, and, in unstable resonators, it contracts instead of
expanding. The inverse diffraction problem is similar in
difficulty to the diffusion equation solved backward in time,
and it is expected that the method will have several limita-
tions. This difficulty would be severe if the backward inte-
gration were pursued for more than one trip between mirrors.
At each mirror, however, the result of the forward integration
is used as the starting field for the next backward integration..
Thus errors in the backward integration do not accumulate
for more than one half-cycle. As long as the distance between
the mirrors is less than a diffraction length, there is no diffi-
culty in handling the sharpening, or "undiffraction," that
occurs during the backward integration. This criterion is well
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satisfied in the case of unstable resonators, since the ratio of
the cavity length to the diffraction length dl (27rF)'1 and
the Fresnel number F > 1. The numerical results of Section
5 are obtained using this proposed scheme of simultaneous

forward and backward integration of the cavity fields. To
compare this scheme with the conventional method ,18,19 in
which only the left- or right-going wave is integrated in for-

ward direction and the integrated gain is saved at each gain

sheet, we repeated the calculations of the resonator field, and

the results of two methods were identical in accuracy. Our

method converged more rapidly because, in computing the

gain, the most recent values of the intensities are used. The
chief advantage of our method, however, is that the memory

requirements are reduced by a factor equal to the number of

the gain sheets since the need to save the gain at each sheet

is obviated.
A transverse mesh of NN, points, where Nx and N, are

a number of points in the x and y directions, respectively, is

chosen to represent the complex fields TR and TL. In the
absence of any transverse flow and inhomogeneities in the gain

medium, the mesh is chosen to cover only one quadrant of the

x-y plane (x > 0 and y > 0) after assuming the rectangular
symmetry; this reduces the storage by a factor of 4. For

square-shaped mirrors, N. = Ny. However, by choosing Ny
= 1, one obtains results for a strip (one transverse dimension)

resonator. A guard-band ratio G > M is chosen to ensure
proper working of the FFT (see Ref. 19). Here M is the
round-trip magnification given by Eq. (3.34). The mesh di-

mensions are Ga, where a is the mirror half-width. Other
parameters, such as the resonator length d, the mirror cur-
vatures b, and b2, the mirror reflectivity R, the Fresnel
number F, the small-signal gain go, and the detuning pa-
rameter Q, are supplied to the program.

A known field distribution TL (0) is chosen to start the it-

erative procedure. The reflection at the output mirror yields

TR(O) given by Eq. (3.31). To come to the beginning of the

gain medium at z = d, (see Fig. 1), the CFT is used to free-

propagate the field 'fR (0) to obtain 4'R (dl). Since 'FL (O) has

no discontinuities, we always use the FFT to propagate the
left-going wave backward to obtain 'L (dl) of the previous
round trip.

As we mentioned in Section 3, the gain medium is divided

into gain sheets whose number is given as input data and is

chosen to satisfy the criterion given by expression (3.10). The

position of the gain sheets is shown in Fig. 1. The fields 'FR

and 'FL are propagated from one segment to the next fol-
lowing the prescription of Eqs. (3.11)-(3.13) until one obtains

the fields 'FR (d2) and fL(d2) at the end of gain medium. The

integral in Eq. (3.12) for the total integrated gain is approxi-
mated by two methods: the trapezoidal rule as in expression

(3.14) and the midpoint formula as in Eq. (3.15). When ex-

pression (3.14) is used, the integrated gain is obtained only
through a self-consistent iterative procedure, which requires
that TR and 'FL at two adjacent segments be available. The
iteration procedure, however, requires four N.Ny additional
locations in memory. Use of Eq. (3.15) makes the code faster

and demands less storage capacity. The desired accuracy can

often be obtained by increasing the number of gain sheets.
At z = d2, TR(d2) is propagated to the mirror at z = d,

where, on reflection, TL (d) is obtained. [Thus it is unnec-

essary to propagate 'FL(d2) to this mirror.] 'L(d) is used for

the half round trip from z = d to z = 0 to obtain 'L (O), while
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'R is propagated backward whenever saturation gain is to be

computed in the manner just described. On arrival of the
field at z = 0 a single round trip has been completed, and the
procedure is iterated to convergence. As a crude check on

convergence, we compute two quantities, the integrated in-
tensity, proportional to the power P, and the variance o 2 of
the intensity distribution at the output mirror at z = 0:

P = S |'Ll 2 dxdy,

C2 = - 12X2dxdy.

(4.1)

(4.2)

We assume that convergence has been achieved when the

change in both P and ¢x on two successive round trips is less
than c, where 10-3 < e ' 10-2. A detailed comparison be-

tween fields is, however, needed to verify genuine convergence.

For empty resonators the fields are renormalized after each
round trip, and the iteration is continued until the change in
the power loss, 1 - P(current)/P(previous), is less than E. For

empty-resonator simulations, a simple Gaussian distribution
with a prescribed power and variance [given by Eqs. (4.1) and

(4.2), respectively] was used as an initial guess for the starting

field, 'L (0). For loaded resonator simulations we used the
solution to the one-dimensional geometrical-optics equation
(3.37) and (3.38) to obtain an estimate of the power levels.

This procedure does not, of course, determine the shape of the

starting field, and we used either a Gaussian or a rectangular
distribution. With the use of the geometrical-optics solution
the convergence rates were slightly enhanced compared with

the case when the starting power is chosen arbitrarily.
Finally, we note that the gain medium used here has been

characterized only by Eq. (2.10): No gain profile has been
specified. This omission could lead to numerical instability
if the larger relative errors in the fields near x = G were sig-

nificantly amplified. Therefore a Fermi-function gain profile

was used to suppress amplification of the fluctuations in the
wings. For numerical purposes, the small signal gain go is
replaced by go(x)go(y), with

go(x) = {1 + exp[20(xo -x)])-, (4.3)

where x0 = 0.8Ga, G being the guard-band ratio as before. In

Section 5 we compare results obtained with and without gain
cut.

5. RESULTS AND DISCUSSION

In this section we present the numerical results obtained using

the unstable-resonator algorithm described in previous sec-
tions. The geometry of the confocal unstable resonator used
is shown in Fig. 1. The resonator parameters were chosen

corresponding to an actual experimental setup. The mirrors
were separated by a distance of 7.3 m, and the 2-m-long gain

medium was situated at a distance of 3.3 m from the output
mirror at z = 0. The small and large mirrors have the radii
of curvature, respectively, b1 = 11.68 m and b2 = 26.28 m, and

in the confocal geometry used b2 -bl = 2d. Further, the left-

and right-going wave magnifications are ML = 1 and MR =

b2/b 1 = 2.25, giving the round-trip magnification M = MR

X ML = 2.25. The value of M is kept fixed in all the numerical

results presented here. The half-width of the large mirror is
assumed to be sufficiently greater than Ma, so edge effects
from this mirror are negligible. Here a is the small-mirror
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Fig. 2. Normalized intensity distribution at z = 0 of the lowest-loss
mode of a strip bare confocal unstable resonator with the Fresnel
number F = 5 and round-trip magnification M = 2.25.

half-width. The transverse coordinates x and y are measured
in units of a, which therefore enters only through the magni-
tude of the Fresnel number F given by Eq. (3.38). The
guard-band ratio G = max/a (where max is the maximum
transverse distance at which the field is calculated) is chosen
according to the criteria discussed in Section 3. Clearly G >
M, and we require that the resonator field remain zero for x
> Ga during the entire simulation. The number of mesh
points is chosen according to the criteria specified in Section
3.

A. Bare Resonator
Before presenting our numerical results for a loaded unstable
resonator, we briefly consider the case of a strip bare resonator.
This is useful for the purpose of code checking. In contrast
to previous work, we employ the CFT algorithm that is ca-
pable of handling edge diffraction accurately. In Figs. 2 and
3 we show the normalized intensity distribution I AIL (x, 0) 2 at
the small mirror when the left-propagating wave has just ar-
rived at the plane z = 0. The mode profile corresponds to the
lowest-loss transverse mode of the unstable resonator. Only
the positive half (x > 0) region is shown, because of reflection
symmetry (about x = 0) in the transverse direction. The
figures are drawn for a moderate value F = 5(Feq = 2.8125)
and for a relatively large value F = 50(Feq = 28.125) of the
Fresnel number given by Eq. (3.38). In the geometrical-optics
limit F - , the intensity distribution is constant for Ix < Ma
and zero outside this region. For finite values of F the de-
tailed qualitative features of the mode profile arise from edge
diffraction that introduces spatial oscillations (ripples) in the
intensity distribution. A comparison of Figs. 2 and 3 shows
that as F increases, the spatial frequency of the ripples in-
creases, while their amplitude decreases as F-1/2.12 Figure
3(b) shows an enlarged view of the intensity profile for F = 50
over the region x < a. The phase profiles (not shown) dis-
play qualitatively similar behavior. For x < Ma, the phase
is almost constant, in accordance with the geometrical-optics
approximations. Edge diffraction introduces small deviations
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whose amplitude decreases with F. Note that the often-used
tube Fresnel number FT = M2F is about 250 in Fig. 3-much
larger than used in most previous work.

To quantify the improvement achieved with CFT, Figs. 4
and 5 show the intensity and the phase profiles of the bare-
resonator mode obtained using the CFT and the FFT algo-
rithms. It is important to stress that the two algorithms differ
in their performance only when the field has a sharp discon-
tinuity such as the one occurring at the output-mirror edge.
Once the field has been propagated away from the output
mirror, only the FFT is used in both cases in view of its faster
execution. Figures 4 and 5 are drawn for a moderately large
value of F = 10 with the number of mesh points N = 200. A
direct comparison shows that significant quantitative devia-
tions (-10%) occur when the FFT is replaced with the CFT.

BARE

0.8 ~~~~~~~~F 50:.8 M = ' ' I | | 2.25

o- 0.6

I-

z 0.4-

0.2 

0 

0 1 2 3 4
DISTANCE, X /a

(a)

0.8

0.6 

a_ 0.4 
Z BARE

F = 50

M= 2.25
0.2

0 0.2 0.4 0.6 0.8 1
DISTANCE, x/a

(b)
Fig. 3. Normalized intensity profile of a strip bare confocal unstable
resonator with F = 50. The other parameters are identical to those
of Fig. 2. To resolve the rapid transverse variations, (b) shows an
enlarged view covering only the small-mirror region x a.
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multiplicative factor, to that obtained for a strip resonator.
This is not surprising, owing to linearity of Eqs. (2.8) and (2.9)
in the absence of gain.

B. Loaded Resonator
For a loaded resonator the forward and backward waves ex-
perience intensity-dependent gain and phase shift during
propagation inside the gain medium. These are calculated
using Eq. (2.10) or (2.12) for given values of the small-signal
gain go and the detuning parameter Q. We now study the
effect of saturated gain on the mode profile of a loaded un-
stable resonator. The resonator parameters are identical to
those used for the bare-resonator case. A moderately large
Fresnel number F = 10 is chosen with M = 2.25, such that the

10

0 1 2 3 4

DISTANCE, X/a

Fig, 4. Comparison of the intensity profiles obtained for a strip bare
unstable resonator with F = 10 using CFT (solid curve) and FFT
(dotted curve) algorithms.

0 1 2 3 4
DISTANCE, x/a

Fig. 5. Comparison of the phase profiles obtained for a strip bare
unstable resonator with F = 10 using CFT and FFT algorithms. The
rapid oscillations in phase beyond x = Ma merely reflect the fact that
the phase is plotted modulo 27r.

Furthermore, the use of the FFT appears to smooth out the
intensity and phase profiles. Physically, this smoothing is
due to a basic limitation of the FFT procedure that cannot
adequately represent the sharp discontinuity at the mirror
edge. By contrast, the CFT was developed to handle this
discontinuity in an exact manner.34' 35 The FFT accuracy can
be improved by increasing N. This was verified for a twofold
increase in N to 400. For this case, the CFT results were al-
most unchanged, while the FFT results showed a better
agreement with those of the CFT.

The case of a three-dimensional bare resonator with square
mirrors is considered by choosing N = N. = Ny to be the same
in the two transverse directions. The resulting intensity
profile I {L (X, y. 0)1 2 for a given y is identical, within a constant

I-
U)

z

2

0

I-
U)z
z

Fig. 6. Illustrating numerical instability in a loaded unstable reso-
nator arising from the amplification of wing fluctuations. The in-
tensity profile is shown (a) with uniform small-signal gain and (b) with
the Fermi profile using Eq. (4.3) with xo = 4a. In both cases god =
10 and the intensity is normalized to the saturation intensity.
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Fig. 7. Intensity profiles in a loaded unstable resonator with (solid
curve) and without (dashed curve) inclusion of the standing-wave
effects. The gain formulas, Eqs. (2.10) and (2.12), respectively, are
used.
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Fig. 8. Same as in Fig. 7 except that the off-resonance case is con-
sidered. Note that the standing-wave effects are more pro-
nounced.

tube Fresnel number FT = M2F 50. We consider a strip
resonator with 400 mesh points and a guard-band ratio of 5.
To begin with, we focus our attention on the on-resonance case
and take = 0. In the following discussion the mode inten-
sity is normalized to the saturation intensity lEl 2 [see Eq.
(2.3)].

It should be noted that the transverse variations of small-
signal gain go can be readily incorporated in the computer
code. If go is assumed to be uniform, a problem arises since
small fluctuations in the wings of the mode profile are sig-
nificantly amplified during each round trip. This could lead
to numerical instability for the high-gain case, as shown in Fig.
6 for god = 10. As we mentioned in Section 4, the instability
can be avoided by using a gain cut so that go reduces to zero
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in the wings of the mode profile [see Eq. (4.3)]. This is not a
limitation since real devices have a gain medium of fine extent.
Figure 6(b) shows the effect of using the Fermi-function gain
profile given by Eq. (4.3). As is evident, amplified wing
fluctuations are suppressed, while the mode structure remains
unaffected.

As we mentioned in Section 2, interference between the
forward and backward waves in a standing-wave cavity
modifies the gain experienced by them. This is a new feature
not included in previous work.'8 2 4 The modified gain for-
mula (2.10) was used in Ref. 27 to study interference effects
in an unstable resonator in the geometrical-optics approxi-
mation (F = ). Figure 7 shows the change in the mode
profile that is due to standing-wave interference for F = 10
and god = 4. Although the qualitative features remain un-
changed, significant quantitative deviations (up to 30%) occur.
It is interesting to note that the detailed mode structure is
largely unaffected, i.e., the number of peaks and their relative
positions remain the same. This can be understood by noting
that peak positions are governed by edge diffraction and the
gain only enhances the amplitude of each peak. The effect
of standing-wave interference is to reduce the peak heights.
Clearly, the extracted power would also be less.4 2

To see the effect of saturated gain on the mode profile, Fig.
7 should be compared with Fig. 4 obtained for a bare resonator
with the same value of F. Again, we note that the features
such as the number of peaks and their relative positions are
unaffected by gain, supporting the view that they represent
a manifestation of edge diffraction. 3 However, each peak
is amplified by a different amount, and the overall intensity
distribution changes significantly with gain. A qualitatively
similar behavior is found to occur for three-dimensional
loaded unstable resonators.

Finally, we consider the off-resonance case when the laser
is detuned from the gain-line center. Figure 8 shows the in-.
tensity distribution for = 1, corresponding to the shift of the
laser frequency by an amount equal to the homogeneous line
width. The other parameters are identical to those in Fig. 7.
The mode profiles are shown with and without including the
standing-wave interference effects. A direct comparison of
Figs. 7 and 8 shows that the laser detuning from the gain-line
center reduces the power carried by the mode without af-
fecting the detailed mode structure. Further, the standing-
wave effects are now more pronounced. These results are in
qualitative agreement with and support those obtained pre-
viously27 in the geometrical-optics approximation.

6. CONCLUSIONS

The electromagnetic-field distribution in loaded unstable
resonators is considered using an iterative approach based on
the beam-propagation method. By a simultaneous integra-
tion of the forward and backward waves, storage requirements
are minimized so that the resulting code can be used for large
Fresnel numbers. To account for edge diffraction occurring
at the small mirror, a CFT algorithm is developed and used.
We find that the use of FFT invariably produces smoothing
of the mode profile unless an extraordinarily large number of
mesh points are used. For our calculations we have used a
modified gain formula that incorporates the effects of inter-
ference between the forward and backward waves. It is found
that this interference reduces the mode power significantly,

2
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and the relative decrease increases with the detuning of the
laser frequency from the gain-line center. Since the inter-
ference effects become less important for a flowing gain me-

dium, the axial gas flow may help to increase the power ex-

traction efficiency of a high-power laser system. An impor-

tant result is that the saturated gain does not alter the number
of peaks and their relative positions in the near-field intensity

distribution. This supports the view that these features arise
from edge diffraction 3 ' and the saturated gain simply am-

plifies each peak, albeit by a different amount depending on
the peak intensities.

APPENDIX A: OUTLINE OF THE
CONTINUOUS-FOURIER-TRANSFORM
ALGORITHM

The CFT algorithm used here is based on a quadrature for-
mula for Fourier integrals derived by Marsden and Taylor47

in which the integral

g(A)= Sb exp(i Ax)f(x)dx (Al)

is approximated by

g(A) = hAB [ exp(igxj)f(xj)

- 1/2f(xo)ei4a - i/f(xN)eiIbI -ihA

k-1
X E irhrC[f(r)(xN)eib - f(r)(xo)eiza] + Rf, (A2)

r=O

where h = (b-a)/N and xj = a + hj. The coefficients A(Ah,
k), B(gh, k), and Cr(gh, k) are chosen so that the error Rf
vanishes when f(x) is a spline of order k with knots at xj for
k even and at xj + 1/2h for k odd. For k = 4 (a cubic spline)

and u = Ah, these coefficients are given by4 7

A = 3/(2 + cos u), (A3)

B = [(2/u)sin(u/2)] 4 , (A4)

Co = [u3(2 + cos u) - 12 sin 2(u/2)sin u]/3u 4 , (A5a)

C, = [U2 (2 + cos u) - 12 sin 2 (u/2)]/3u 4 , (A5b)

C2 = [u(2 + cos u) - 3 sin(u/2)]/3u 4 , (A5c)

C3 = 0. (A5d)

For small u expressions (A4) and (A5) for B and Cr are nu-
merically unstable and must be replaced by a power series in
u. Such power series were given by Einarsson4 8 for the cubic
spline. However, the quadrature formula (A2) of Marsden
and Taylor 47 is completely general and holds for all k.

Equation (A2) is directly applicable when the function f(x)
is known. In our application to field propagation in unstable
resonator cavities, however, f(x) is known only at the mesh
points xj, and the function derivatives f r)(x) required in Eq.
(A2) are not readily available. Instead, we have used a

third-order forward (backward) difference approximation to
the function derivatives at the left (right) end points, re-
spectively. Marsden and Taylor,47 citing a theorem of Swartz
and Varga,49 have pointed out that this approximation should
result in formulas for which the optimal error still obtains.

Since in many applications the transform g(A) is required
for generally many values of A, a numerically efficient evalu-
ation of the first summation in Eq. (A2) is desirable. We
consider a uniformly spaced set of frequencies:

(A6)

For M = N, Ao = 0, and AA = 27r/(b - a), this summation may
be carried out directly by using the FFT. However, for many
applications this choice is unnecessarily restrictive. For ar-
bitrary M, Mo, and AA, the sum

N-1
Sm = _ exp[i(tto + Agm)hj]fj

j=o
(A7)

may be evaluated by using the remarkable chirp z transform,4 6

which, for a given input sequence V/i, obtains

N-1
(km = F2 Zm nfn,

n=O
m = O1, .. .,M-1, (A8)

with z given quite generally by

Zm = ZoW , (A9)

and in a time proportional to L log2 L, where L is the number
of points in the FFT used internally by the chirp z transform
and must satisfy

L 2M+N- 1. (A10)

Comparison of Eqs. (A6) and (A7) with Eqs. (A8) and (A9)
suggests the assignments

zo = exp[-igoh],

for the evaluation of Eq. (A7).
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