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Two- and Four-Wave Mixing with Saturable 
Absorption and Gain 

Dejan TimotijeviC, Milivoj Belid, and Robert W .  Boyd, Member, IEEE 

Abstract-An exact solution to a model of two- and four-wave 
mixing in photorefractive media with saturable gain and ab- 
sorption is presented. Pump depletion effects are accounted for, 
and the procedure for matching two-point boundary conditions 
is given. Possibilities of multistable solutions are investigated, 
and procedures on how to deal with such situations are out- 
lined. It is found that the energy transfer between waves is less 
effective in the nonsaturated regime as compared to the satu- 
rated regime. It is also established that the nonsaturated system 
is more stable than the saturated under the same conditions. 

I. INTRODUCTION 
number of articles over the last decade were con- A cerned with the theory and exact solution of wave 

equations describing photorefractive (PR) optical phase 
conjugation (OPC) [ 11. Thus far they have been solved 
only in the saturation regime [2]. This regime is estab- 
lished under high illumination intensities, when most of 
the trapping sites for photoinduced charges are occupied, 
and the wave coupling constant g and absorption coeffi- 
cient a do not depend on the light intensity. However, 
nowadays the experiments with photorefractives are done 
at low power levels, and with the pump depletion and ab- 
sorption taken into account, the conditions for saturation 
are not met. Indeed, it is observed that at low beam in- 
tensities the wave coupling and the absorption coefficient 
in barium titanate become intensity dependent [3], [4]. It 
is now known in what way this dependence affects the 
phase conjugating (PC) process. 

The models with intensity-dependent coupling or inten- 
sity-dependent absorption have already been the subject 
of scientific investigation [4]-181. However, to date there 
is no complete, fully consistent theory; this is no wonder, 
in view of the complexity of the PR effect. In the situation 
where experimental results vary from sample to sample, 
and there are many free parameters left to fit the theory, 
we utilize simple models which capture the essential fea- 
tures of intensity dependence: initial linear growth and 
saturation. 

An early such model was given by Townsend and 
LaMacchia [4]. According to this model the intensity de- 
pendent two-wave mixing (2WM) gain coefficient is given 
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by : 

where g, is the saturated gain, a = ( c  X IN + b2)'/* and 
b = X 1 / 2  + 1 / 2 ~ ~ .  Here c is the capture coefficient for 
the photoexcited charges, X I  is their generation rate, N 
is the total number density of charges available for exci- 
tation, and 70 is the thermal decay constant. The model 
predicts a linear dependence of g(Z) for low intensities, 
and a saturation for high. 

The theory currently in vogue comes from Kukhtarev 
et al.  [5]. According to this theory, as well as the similar 
hopping theory of Feinberg et al. ,  [6] the expression for 
the saturated space-charge field, or the saturated gain 
which is proportional to the space-charge field, should be 
multiplied by an intensity dependent factor R ( I ) ,  given 
by : 

where uh, ue, ffd are the hole, the electron, and the dark 
(thermal) conductivities of the crystal, respectively. Both 
the hole and the electron photoconductivities vary linearly 
with the illumination intensity. Even though experimental 
results [7] on BaTi03 crystal suggest sublinear depen- 
dence, many features of the PR effect are adequately de- 
scribed by the Kukhtarev theory. 

A recent extension of the Kukhtarev theory, which takes 
into account shallow traps in addition to deep donors, [7], 
[8] similarly predicts that the Kukhtarev expression for 
the saturated space-charge field, and therefore the 2WM 
gain coefficient, should be multiplied by an intensity de- 
pendent factor: 

where k i  = k$D + k i T  is the square of the total Debye 
screening wave vector, and kiD and kLT are the portions 
coming from deep donors and shallow traps. /3 is the ther- 
mal excitation rate and sT is the light excitation cross sec- 
tion for traps. The Debye screening wave vector also de- 
pends on the intensity. However, when the donor 
contribution to the Debye screening is predominant, this 
dependence is supressed, q -, 1. On the other hand, when 
the trap screening is predominant, or when the two con- 
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tribute about equally, a simple functional dependence is 
obtained: 
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This theory is applicable to both n-type PR crystals, such 
as BSO, or to p-type crystals, such as BaTiO,. It also 
agrees well with experimental results [7]. 

Thus, by inspecting (1)-(4), a simple generic intensity 
dependence of the gain coefficient could be suggested: 

( 5 )  

including simple variations of the same. Here C is a pa- 
rameter dependent on the material. We use (5) as the basic 
model. It can be tested experimentally, for example by 
external incoherent illumination of the crystal. The sat- 
urable gain then has exactly the form given by ( 5 ) ,  and 
the constant C corresponds to the intensity of this inco- 
herent illumination. 

The wave mixing models employed here are the stan- 
dard two- and four-wave mixing arrangements in PR crys- 
tals [l].  In 2WM a reflection geometry is presumed, with 
the two waves (Al  and A 2 )  incident on the crystal from the 
opposite sides. In 4WM there are additional two waves, 
the probe A4 impinging from the side of the wave A I ,  and 
its counterpropagating PC replica A 3 .  Our goal is to con- 
sider PR mixing of these waves with saturable coupling 
constants, and at the same time to include intensity de- 
pendent absorption, which is appropriate to PR crystals. 
We also investigate the possibilities of unstable behavior 
in the system. 

There are four ways in 4WM in which the waves can 
mix and build diffraction gratings through the PR effect. 
Two of these contribute to the PC wave generation, and 
are commonly denoted as the transmission and the reflec- 
tion gratings. The other two come from the 2WM of the 
pumps, and of the probe with the PC wave. Most accounts 
up to date assume only one important grating (transmis- 
sion or reflection) to be operative, and ignore 2WM terms. 
We assume that both transmission and reflection gratings 
are present, and contribute equally, and we account for 
the mixing of the pumps as the predominant 2WM pro- 
cess. 

The layout of the paper is as follows. Section I1 deals 
with 2WM, Section 111 deals with 4WM, and Section IV 
summarizes our results. 

11. TWO-WAVE MIXING 
A thorough recent review of 2WM in nonlinear media 

is provided by Yeh [9]. Reflection geometry with and 
without intensity-dependent coupling was first considered 
by Ja [lo]. BeliC 1111 included linear absorption exactly. 
A similar procedure will be used here to treat the inten- 
sity-dependent coupling and nonlinear absorption. 

Our starting points are the wave equations for intensi- 

ties in the two-wave PR mixing [9]: 

( 6 4  

(6b) 

where Z = ZI + Z2 is the total intensity, and a(Z) and g(Z) 
are the intensity-dependent absorption and wave coupling 
coefficients. The prime denotes the derivative along the 
propagation (2) direction. For g(Z) we pick the expression 
given by (5) (dropping the subscript s). Many different 
models exist for the saturable absorption coefficient. We 
opt for a form found by Brost, Motes, and Rotge [3] to 
account for the observed behavior in PR crystals: 

1 1 1 2  

I 

I112 

I 

z; + cy(Z)ZI + 2g(Z) - = 0 

z; - cy(Z)Z, + 2g(Z) - = 0 

I 
C + I  

a(Z) = cy0 + cy - (7) 

where cyo is the linear absorption, and cy is a material pa- 
rameter. In principle, the constant C here could be differ- 
ent from the one in g(Z). However, there is no reason to 
presume that the saturation mechanism in PR gain is fun- 
damentally different from the one in PR loss. We assume 
that the constant C is the same in both (5) and (7). In order 
to consider only the effects of saturable absorption, linear 
absorption is neglected. 

The solution of (6) proceeds as follows [ 111. First, a 
set of new variables is introduced: U = ZI + Z2, z, = Z, - 
1 2 ,  f = 2(Z1 Z2)’I2. In terms of these variables, equations 
to be solved become: 

( 8 4  

(8b) 

(8c) 

Sincef2 = u2 - v2, only two of these equations are in- 
dependent. One equation is eliminated by assuming: 

(U + C)U’ + cyuu + g f 2  = 0 

(U + C)U’ + cyu2 = 0 

(U + C)f’ + guf= 0. 

U = fcosh F z, =fs inh  F. (9) 

Equations for the new independent variables f and F are: 

(loa) 

(lob) 

In this form the problem can be treated analytically. Di- 
viding (loa) by (lob) brings an implicit relation between 
F and f :  

(C + fcosh F ) F ‘  = f ( g  sinh F - cy cosh F )  

(C + fcosh F)f’  = -g f2 cosh F. 

f = In - (11) 
F &  

Fo) = 0 - tanh x fo 

where /3 = cy/g and the subscript 0 means that the cor- 
responding quantity is evaluated at z = 0. It is presumed 
that the crystal extends from z = 0 to z = d, and that Zl(z 
= 0) = CI and Z,(z = d )  = C2 are the given boundary 
conditions. A convenient logarithmic expression exists for 
the integral in ( l l ) ,  RI  = In [G(F)/G(F,)], with: 
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where r = (0 - 1 ) / ( P  + 1). The values P = t = * I ,  
i.e., g = fa, require special analysis, and the result is 
G(F) = exp [cF/2 + exp (2cF)/4]. There is no discon- 
tinuity as P + k 1. 

The knowledge of the relation between F and fallows 
an easy integration of (loa), 

R2(F, Fo) - R I V ,  Fo) = gz (13) 
with R2 denoting another quadrature involving variable 
f (F):  

a!x 
R2(F’ Fo) = ! I o f ( x )  (sinh x - cosh x) 

where D = [2CG(Fo)/(P + l)fo], h(F) = r exp (2F) ,  
q = P 2 / ( P 2  - l ) ,  and sgn denotes the sign function. In 
this manner, (13) defines the function F(z ) ,  or explicitly 
z(F), and (11) defines the function f ( F )  = 
foG(F)/G(Fo). The intensities are then given by ZI = f 
exp F / 2  and I, = f exp ( -F ) /2 ,  and the equation part 
of the problem is finished. There remains the boundary- 
value part of the problem. 

Relations (1 1) and (13) are simply connected with the 
incomplete beta function, or Gausses hypergeometric 
function 1121. For 101 > 1 (I? > 0), the integral in (14) 
can be expressed as: 

where X = /3/[2(P + l)] ,  D’ = DlI’-’, and 

Here Fl denotes the Gauss hypergeometric function, and 
p = 1 /(1 - P 2 ) .  Equivalently, by a variable change r = 
h / ( h  + l), the same integral can be expressed as: 

R2 = -D‘ xx- I ( l  - ~ ) 4 - ~ - l  & S :, 
= D’[Br(X, 9 - A) - Br,(X, - XI1 (17) 

where B,(x, y) is the incomplete beta function 1121. For 
1 PI < 1 an expression similar to (15) holds: 

R2 = D’ [ F (‘.O ) - F(“”J] (18) 
y ,  - P  Yo,  - 

with x = t / ( t  - l ) ,  y = l / ( t  - I ) ,  and t = -h. The 
upper pair of variables applies when t < 1, and the lower 
whent  > 1. 

The boundary-value part of the problem is handled in 
the following manner. In order to write down the solu- 
tions for intensities explicitly, the knowledge of Fo and 
Fd (i.e., to and td) in terms of the given boundary values 

2 

(b) 

Fig. 1. (a) The surface z = R , ( t , ,  t d )  - R2(ro, t d )  + gd, (19a). Here and 
thereafter d = 1 cm. (b) The corresponding surface (19b). The cross sec- 
tions of these two surfaces with the z = 0 plane define multiple solutions. 

C1 and C2 is necessary. They are found by solving a sys- 
tem of two coupled algebraic equations: 

Rz(Fd, Fo) - R I ( F ~ ,  Fo) - gd = 0 (19a) 

c2 

G(Fd) c1 
In - G(Fo) + Fo + Fd + In - = 0. (19b) 

As it happens often with nonlinear equations and implicit 
relations, (19) allows multiple solutions. Typical situa- 
tion is presented in Figs. 1 and 2. Such solutions might 
complicate the analysis, especially when there is no clear 
criterion which would distinguish between the physically 
relevant (allowed) and irrelevant solutions [ 1 11. Here, by 
simple inspection, a class of solutions is discarded. How- 
ever, in the following section on 4WM, there is no such 
criterion, and multiple solutions appear, leading to a cha- 
otic response of the system. 

Fig. 3 presents a comparison between the saturated and 
the nonsaturated regime. It is seen that the saturated re- 
gime enables more efficient energy transfer from the wave 
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zz; = 2y(Z)Z1Z* + 2g(Z)Z*(Z, - Z,) 

ZZi = 2g(Z)&(Z1 + Z2) + 4g(z)(ZJ2z,z4)1’2 (204 

ZZ; = 2g(Z)Z4(Z1 + Z2) + 4g(Z)(Z1Z2Z3Z4)1’2 (20d) 
where the y term describes 2WM between the pumps, and 
the g term takes into account the equal-strength 4WM. Z 
is the total intensity, Z = ZI + Z2 + 1, + Z4, and both g(Z) 
and y(Z) have the form given by ( 5 ) .  In writing (20) it is 
assumed that diffusion is the dominating charge trans- 
porting process, and absorption is neglected. It seems im- 
possible to solve coupled 4WM equations analytically 
with the absorption included in any form. Further, the rel- 
ative phase 4 = + 42 - 4, - d4 is locked to 0 or R 
(so-ca11ed exact Opt), and the gratings between the sig- 
nal Z4 and the P c  wave z3 are ignored. 

The solution of (20) proceeds similarly to the ~ W M  
case. New partial and differ- 
ences of the intensities are introduced: u1 = I ,  + Z2, u2 

Fig. 2. Possible multiple solutions of (19). The curves presented are the 
cross cuts of surfaces in Fig. 1, and the points where these curves cut each 
other lead to multiple solutions. These points define the values of the ar- 
g m ” S  1, and t,, for which the boundary conditions are satisfied. Of the 
two points visible, the point to the left leads to negative z ,  and should be 
discarded. The unique solution corresponds to the point to the right. Note 
also the “avoided crossing” nature of the singularity at r ,  = r,, = 1 .  

1 4 1  

I 1 1 I 1 

0 0.2 0.C 0.6 0.8 1.0 
2 

Fig. 3 .  Unique solutions to 2WM with nonsaturated (full lines) and satu- 
rated (dashed lines) coupling and absorption. The parameters are: g = 1 
cm-’ ,  a = 0.5 cm-’ ,  C, = 1 ,  and Cz = 0.5. 

ZI to the wave Z2 (for this sign of g ;  the opposite sign 
changes the direction of the energy flow.) A summary of 
our findings is provided in Section IV. 

111. FOUR-WAVE MIXING 
The 4WM model employed here presumes that the for- 

mation of gratings proceeds by more than one grating 
mechanism. Usually the transmission gratings are pre- 
ferred experimentally, and their predominance is assured 
by the choice of the direction of the c axis, or by other 
means. When no attention is paid to these matters, it must 
be assumed that competitive gratings are formed in the 
crystal, and their cumulative influence on the PC process 
must be taken into consideration. 

The intensity equations describing 4WM in PR media, 
with the assumption that transmission and reflection grat- 
ings contribute equally (i.e., have the same g coefficient) 
are derived in [ 131 : 

(204 zz; = 2y(Z)Z1Z* - 2g(Z)Z1(Z4 - 13) 

= I3 + Z,, ul = Z2 - I , ,  u2 = Z4 - Z,, and a set of two 
auxiliary functions is defined: f :  = 4Z1Z2, f i  = 4Z3Z4. 
Equations to be solved become: 

(C + z ) U ;  = 2gqv2 + yf: 
(C + z )u;  = 2gu1v2 

(C + 04 = 2g(u, U2 + fib) 

(C + z)v; = 2gUIu2. 

(2 1 a) 

(2 1b) 

(21c) 

(214  

It is seen that the variables ul and u2 are simply related: 
u1 = v 2  + A ,  where A is a constant to be evaluated from 
the boundary conditions. Similar equations can be written 
forfi andfZ: 

(C + o f ;  = yfiu1 

(C + of ;  = 2g(u1f2 + u2fJ 

(224 

(22b) 

and fi can also be expressed in terms of u2: f l  = 
f id (u2/u2d)Y/2g .  Thus, U ,  = ( U :  + f:)I/* is also given in 
terms of u2. The strategy is to express the remaining vari- 
ables u2 andfZ also in terms of u2,  and then to solve an 
equation for u2. This is accomplished most easily by in- 
troducing a new variable w :  

u2 = v2 cosh w f2 = u2 sinh w (23) 

and by rescaling all variables with respect to U2d = Z4& u 
= U I  / u 2 d ,  f = fi These variables should 
not be confused with the ones used in the previous sec- 
tion. The final set of equations is of the form: 

(24) 

where c = C / v Z d ,  i = U + U cosh w is the total intensity 
in new variables,f(u) = a d / * ,  and u(v) = [ ( U  + + 
f2]’l2. Here a = f l d / v 2 d ,  E = y/g ,  and 6 = A / v 2 , .  

The set of coupled equations (24) can be solved in 
quadratures. The solution is of the form: 

U = 

(c + i)w’ = 2gf (c  + i)v’ = 2guv 
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cosh w (x) 
In v + c j"' + j" dx = 2g(z - d )  

I xu(x) I xu(x) 
(25b) 

and the convenient feature of the method is that the orig- 
inal two-point boundary value problem is transformed into 
an initial value problem. The values of both vafiables are 
known on the z = d face of the crystal: v d  = 1, w d  = 0. 
However, the input parameters a and 6, which figure in 
(25), depend on the missing boundary values, and their 
evaluation is provided by a self-consistent procedure. The 
procedure is described in our recent publication [14]. 

In short, a and 6 could be given either in terms of the 
missing boundary values I l d  and 14d on the z = d face of 
the crystal, or in terms of 120 and 130, missing on the z = 
0 face. The problem of fitting boundary conditions is re- 
solved by an iteration map. One starts by choosing arbi- 
trary initial values a, and 6,; from these I l d  and 14d are 
calculated, and 120 and 130 (i.e., vo and w,) are found by 
evaluating integrals in (25), or by solving (24) on com- 
puter. This enables the calculation of the new values for 
a l  and and the procedure is repeated until conver- 
gence. 

We find the procedure to be stable for g negative, and 
for arbitrary other parameters. For g positive the instabil- 
ities set in, and we investigate these instabilities by stan- 
dard methods of nonlinear dynamics. This is done by 
evaluating the fixed points of the arbitrary composition 
power of the map. Such fixed points correspond to differ- 
ent periodic cycles that may exist in the map, and may 
reveal the nature of the transition to chaos, if there is one 
in the system. However, seeing such instabilities in a 
model map does not mean that they exist in a real crystal. 
We have addressed these questions elsewhere [14]. 

Figs. 4 and 5 show stable solutions for C = 0 and C = 
1, and for two different values of y .  It is seen that the 
saturable regime is less effective in transferring energy 
between the waves than the saturated regime. The PC re- 
flectivity attained is higher in the saturated regime. It is 
also seen that the parameter y has little influence on the 
PC process. However, it strongly affects the pumps (as it 
should, since it is responsible for the 2WM between the 
pumps). The form of the functions v and w is also little 
affected by y. The intensities are given in terms of v and 
w by the following formulas: 

u(v) - ( U  + 6) u(v) + ( U  + 6) 
2 I2 = I4d 2 [I = 14, 

cosh w - 1 cosh w + 1 
I3  = I 4 d V  ,, I4 = I 4 d v  , . (26b) 

L L 

Intensity reflectivity is thus: 

(27) 
cosh WO - 1 
cosh WO + 1 

R =  

and it is smaller than 1. This restriction arises because the 
case considered is of two competitive gratings set up 

~ 

1919 

0 

Fig. 4.  Stable solutions for 4WM with saturated, (a) and (b), and non- 
saturated, (c) and (d), coupling coefficients. (a) and (c) depict intensities, 
and (b) and (d) show the corresponding ZJ and w functions. The nonsatu- 
rated case leads to a less effective phase conjugation. The reflectivities 
measured are: R z 0.881 for the saturated and R z 0.657 for the nonsa- 
turated case. The parameters are: g = -2 cm-' ,  y = 1 cm- ' ,  C, = 0.7, 
Cz = 0.9, C, = 0.4 

I 7 

Fig. 5 .  The same as Fig. 4, only y = -1 cm- '  in this case. The sense of 
the energy transfer for the pumps is reversed now, but there is little change 
in  the PC process. The reflectivities are now R G 0.856 for the saturated 
and R z 0.628 for the nonsaturated case. 

simultaneously in the crystal [ 131. Such competitive grat- 
ings may adversely affect other PC processes in PR crys- 
tals as well. For example, double phase conjugation is 
impossible under these conditions [ 141. 

Figs. 6 and 7 display unstable situations that may arise 
in the system. Fig. 6(a) presents a bifurcation diagram of 
the reflectivity for the saturated crystal, and Fig. 6(b) rep- 
resents the corresponding situation in the nonsaturated 
crystal. While in Fig. 6(a) complicated behavior is ob- 
served, including a transition to chaos via the (reverse) 
period doublings, in Fig. 6(b) only simple periodic orbits 
are visible. It is seen that the process of 4WM is more 
stable in the nonsaturated regime, i.e., stronger couplings 
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0 

I ‘ I  
--k I 

J 
- 3  

(b) 
Fig. 6 .  (a) Bifurcation diagram of the intensity reflectivity as y is varied, 
for the saturated regime (C = 0). To the right a quasi-periodic behavior o f  
the system is observed. To the left the quasi-periodic behavior is inter- 
rupted by a chaotic window. Going to the left, the chaos is reached by a 
period doubling scenario. (b) The corresponding situation in the saturable 
regime (C = I ) .  No chaos is observed, only simple P 2  and P 1 periodic 
orbits. 

are needed to destabilize a nonsaturated system. This is 
further corroborated by Fig. 7, which depicts the bifur- 
cation diagram obtained by sampling the constant C as the 
control parameter. Evidently, the system becomes more 
stable as the constant C is increased, which is equivalent 
to having less and less saturated crystal. 

IV. CONCLUSION 
We have investigated 2WM and 4WM processes in PR 

crystals in the nonsaturated regime, i.e., when the cou- 
pling “constant” and absorption depend on the light in- 
tensity. A model of saturable absorption in 2WM via re- 
flection grating is introduced, and the corresponding wave 
equations are solved exactly. The solutions are written in 
terms of hypergeometric functions, and presented graph- 
ically. From the solutions it is evident that the energy 
transfer between waves is less effective in the nonsatu- 
rated stage of the process. No instabilities in 2WM are 
found. 

In the second part of the paper a model of multigrating 
4WM is investigated, with intensity-dependent coupling 
coefficients. A system of four nonlinear differential equa- 

1.0 

> 
I- - 
I 
2 0.5 I- 

-1 
L 
W 
II: 

0 
0 0.5 c 1.0 

(a) 

1.0 , 

V I  
0 0.015 0.030 

(b) 

Fig. 7. Bifurcation diagram as the saturation parameter C is varied. The 
system is chaotic for C = 0 (saturation), and then proceeds through a series 
o f  changes until a unique solution is obtained for C = 1 (nonsaturated 
system). (b) depicts in greater detail the region around C = 0 from (a). 

tions for the steady-state energy transfer is solved in terms 
of quadratures, and a boundary-value fitting procedure 
devised in the parameter space. Stable and unstable so- 
lutions are found, depending on the strength of the cou- 
pling. 

For g negative, only stable solutions exist. In this re- 
gion our procedure rapidly and accurately converges to a 
unique solution satisfying given boundary conditions. As 
compared to standard shooting or other methods, our pro- 
cedure is found superior, especially when multiple solu- 
tions occur in the system. 

We find that the energy transfer is adversely affected 
when the mixing of waves proceeds in the nonsaturated 
regime. This conclusion is perhaps obvious, however, we 
also find that the stability of the PC process is enhanced 
in this regime. The stability is also enhanced by turning 
the absorption on, but this influence is expected. Glob- 
ally, absorption suppresses instabilities, but it also sup- 
presses the processes of interest. 

For g positive, sooner or later, instabilities set in. Dif- 
ferent types of unstable behavior are observed: quasi-pe- 
riodic motion on a torus, and a period doubling cascade 
to chaos. Chaotic behavior in this context means that the 
intensity reflectivity does not settle onto any particular 
value, but wanders on a strange attractor in the parameter 
space. In general, the nonsaturated regime is more stable 
than the saturated regime. In this respect Fig. 7 is partic- 
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Ularlj’ instructive: while for c = 0 (saturation) the system 
is chaotic, for C = 1 it is stable for the same set of pa- 
rameters and boundary values. 

In the end, it should be pointed out that instabilities 
found in a steady-state numerical analysis (such as ours), 
should be viewed with suspicion. They may not exist in 
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the real crystal. The existence of such instabilities should 
be verified experimentally. 

[31 

REFERENCES 

P. Gunter and J .  P. Huignard, Eds., Photorefractive Materials and 
rheir Applicarions I and I I ,  Vols. 61 and 62 of Topics in Applied 
Physics. Berlin: Springer, 1988. 
M. Cronin-Golomb, B. Fisher, I. 0. White, and A. Yariv, “Theory 
and applications of four-wave mixing in photorefractive media,” IEEE 
J .  Quantum Electron., vol. QE-20, pp. 12-30, 1984; M. R. Belid, 
“Exact solution to the degenerate four-wave mixing in reflection ge- 
ometry in photorefractive media,” Phys. Rev . ,  vol. A3 l ,  pp. 3 169- 
3174, 1985. 
G. A. Broost, K. A. Motes, and J .  R. Rotge, “Intensity-dependent 
absorption and photorefractive effects in barium titanate,” J .  Opt.  
Soc. Amer. E ,  vol. 5 ,  pp. 1879-1885, 1988. 

141 R. L. Townsend and J .  T .  LaMacchia, “Optically induced refractive 
index changes in BaTiO?,” J .  Appl. Phys . ,  vol. 41, pp. 5188-5192, 
1970. 

[5] N .  V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S.  Soskin, and 
V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. 
Steady state,’’ Ferroelect.,  vol. 22, pp. 949-960, 1979. 

[6] J .  Feinberg, “Altering the photorefractive properties of BaTiO, by 
reduction and oxidation at 650°C,” J .  Opt. Soc. Amer. B ,  vol. 3, pp. 
283-291, 1986. 

[7] S .  Ducharme and J .  Feinberg, “Speed of the photorefractive effect in  
a BaTiO, single crystal,” J .  Appl. Phys., vol. 56, pp. 839-842, 1984; 
D. Mahgerefteh and J .  Feinberg, “Explanation of the apparent sub- 
linear photoconductivity of photorefractive barium titanate,” Phys. 
Rev. Let t . ,  vol. 64, p. 2195, 1990. 

[8] P. Tayebati and D.  Mahgerefteh, “Theory of the photorefractive ef- 
fect for Bi,,SiOzO and BaTiO, with shallow traps,” J .  Opt .  Soc. Amer. 
E ,  vol. 8, pp. 1053-1064, 1991; Erratum, vol. B9, p.  177, 1992. 

[9] P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J .  Quantum 
Electron., vol. 25, pp. 484-519, 1989. 

[IO] Y. H. Ja, “Energy transfer between two beams in  writing a reflection 
volume hologram in a dynamic medium,” Opt.  Quanrum Electron., 
vol. 14, pp. 547-556, 1982; -, “Intensity dependence of station- 
ary energy transfer in degenerate two-wave mixing in a reflection ge- 
ometry with photorefractive crystals,” Opt. Quantum Electron., vol. 

[I11 M. R. BeliC, “Comment on using the shooting method to solve 
boundary-value problems involving coupled-wave equations,” Opt.  
Quantum Electron., vol. 16, pp. 551-557, 1985: W. Krolikowski and 
M. R. BeliC, “Multigrating phase conjugation: exact results,” Opt.  
Le t t . ,  vol. 13, pp. 149-151, 1988. 

New York: 
McGraw-Hill, 1953, vol. I .  

17, pp. 291-295, 1985. 

1121 A. Erdelyi, Ed., Higher Transcendental Functions. 

Dejan TimotijeviC was born in Yugoslavia in 
1964. He received the B.S. degree in physics in 
1987 and the M.S. degree also in physics in 1991 
from the University of Belgrade, Yugoslavia. 

He is currently working towards the Ph.D. de- 
gree in physics, on the problems of optical phase 
conjugation and photorefractive effect. His areas 
of interest include nonlinear dynamics and nonlin- 
ear optics. 

Milivoj BeliC received the B.S. degree in physics 
from the University of Belgrade, Yugoslavia, in 
1974 and the Ph.D. degree also in physics from 
City College of New York, NY, in 1980, 

He spent 1980 and 1981 as a research associate 
with the Optical Sciences Center, University of 
Arizona, Tucson. and 1986 and 1987 as a Hum- 
boldt Fellow at the Max-Planck Institute for 
Quantum Optics, Garching, Germany. He is cur- 
rently an associate professor at the Institute of 
Physics, Belgrade, Yugoslavia. His research in- 

terests include phase conjugation, instabilities and chaos in optical system, 
and solitons-in general, nonlinear optics and nonlinear dynamics. 

Robert W. Boyd (M’87) received the B S degree 
in physics in 1969 from the Massachusetts Insti- 
tute of Technology, Cambridge, and the Ph.D 
degree in physics in 1977 from the University of 
Califomia, Berkeley. His dissertation work in- 
volved the use of nonlinear optical techniques for 
infrared detection for astronomy 

He joined the faculty of the Institute of Optics, 
University of Rochester, Rochester, NY, in 1977 
and since 1987 has held the position of Professor 
of optics His research interests include studies of 

the nonlinear optical properties of materials, nonlinear optical interactions 
in atomic vapors, optical phase conjugation, and the development of new 
laser systems 


