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An efficient and reliable numerical algorithm for solution of the driven nonlinear Schrédinger equation:

i0,d(x.y. t)+A4—(x—pld)*)A=1%

and Zakharov’s equations in 2+1 dimension is presented. The algorithm is an FFT-based modified thin-sheet correction

scheme.

1. Introduction

The driven nonlinear Schrodinger equation
(DNLSE) describes resonant absorption of electro-
magnetic waves and generation of density cavities
in an inhomogeneous plasma when the effect of
ion inertia is neglected [1-3]. Formation of the
cavities is accompanied by the development of a
transient solitary wave structure in the electromag-
netic field (“soliton flash” [4]). In view of the
problems concerning the stability of stationary
solutions in 1 + 1 dimension (one space, one time)
[3-6], as well as the collapse of Langmuir solitons
in 2 + 1 dimensions [2,7], we present an alternative
reliable and efficient method for numerical solu-
tion of DNLSE. The method is also applied to the
case when ion inertia is taken into account, and a
strong Landau or collisional damping of ion waves
assumed. This case is described by a coupled set of
differential equations (Zakharov§ equations) for
the electric field and plasma density [2-7].

The algorithms thus far used in numerical treat-
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ment of DNLSE include the time-averaged
Crank-Nicholson procedure [3], Numerov scheme
in space, with a leapfrog in time [6], and a method
of spectral representation of the derivatives, with
nonlinearities computed via Fourier transform to*
configuration space [7]. Other spectral algorithms
are used as well [8], but they bear little resemb-
lance to the method described in this paper.

While in spirit similar to that of ref. [7], our
method contains many new features which render
it useful and worthwhile for presentation to the
computer oriented physics community. The method
represents a modification of the thin-sheet gain
procedure [9-11] developed earlier for the mode
calculation in a high-power laser.

2. Numerical procedure

The driven nonlinear Schrodinger equation for
a two-component scaled electric field 4 = (4,, 4,)
is of the form [3,6]:

0,4, (p, t)+AA —mA, =1,
i3,4,(p, t) +44,—mA, =0,

(2.1a)
(2.1b)
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where m = x — p(]A,|* +]4,|*) represents the
nonlinear medium interaction term ( p is the non-
linearity coefficient), A =97+ 97 represents the
two-dimensional Laplacian, and p = (x, y). Except
for the detailed structure of m, eq. (2.1b) is in
form analogous to the paraxial wave equation,
which has been treated by the thin-sheet gain
procedure elsewhere {10,11], and therefore will not
be analysed here. However, the essential ingredi-
ents of the thin-sheet gain or correction procedure,
as well as modifications needed in treatment of eq.
(2.1a) will be given here.

Indeed, if in eq. (2.1a) m were zero, the remain-
ing equation is linear, and thus easily solved by the
Fourier transform technique. In that case we take
two-dimensional spatial Fourier transform of eq.
(2.1a) (subscript x is omitted):

id,4(q. 1) —qg’°A=5(q), (22)
where

_ _ d% o ipa

Alg. 1) f(z_ﬂ)z A(p. 1) (2.3)

is the direct Fourier transform, and 8(q) is the
two-dimensional delta function. Then:

—ig?

_ g%t T e ' -1
A(g,t)=e"" A(q,0)+:—;.;8(¢1), (2.4)

or in the configuration space:

A(p,t)=(FT) 'e '7(FT)4(p,0) —it, (2.5)

where (FT) [(FT)™'] denotes the direct [inverse]
Fourier transform. Therefore, a formal solution of
eq. (2.1a) with m =0,

A(p, t)=¢"4(p, 0) — it (2.6)

actually corresponds to a sequence of operations
described by eq. (2.5). An equaily formal solution
of the full eq. (2.1a):

A(p, z)=eiF[A(p,0)—if0'e*iF], (2.7)

with F=1tA — [im = (A — (m}), can also be
broken into a sequence of operations to be per-
formed upon the initial field A(p, 0). We preferred
a simple sequence correct up to the third order in

time step & [10]:
A(p, tn+1) = ethd/2 g=ih{m) elhA/ZA(p’ ‘,

—ih—h¥m) /2. (2.8)

The first operator to act on A(p, ¢,) is the same as
in eq. (2.6) or (2.5), only here it acts over the
interval /2 — it is therefore a free-space propaga-
tor for h/2. The medium correction terms
exp(—ih(m)) and —h*(m) /2 require evaluation
of the mean of m across the (presumably small)
time step. While a more elaborate procedure might
be thought of, we simply use m evaluated at the
current value of ¢ for {(m). In this manner we save
computer core space and make simple and effi-
cient code. In this approach the continuous tem-
poral development is approximated by a series of
medium (or vertex) corrections in-between which
the temporal advance is achieved by the free-space
propagation. This is referred to as the thin-sheet
correction approximation [9-11].

The error and stability analysis of the thin-sheet
procedure have previously been performed in the
context of beam propagation in the atmosphere
[10] and in a lasing medium [11]. Here we only
outline the crucial steps in this analysis without
being too rigorous. Looking at eq. (2.7) it is seen
that operator F, which figures in the exponent,
actually presents a sum of two noncommuting
operators hA and h{m). Therefore adequate care
must be paid to the ordering of these operators as
we advance in time. By writing exp(iF) as
exp(ihd/2) exp(C) exp(ihA/2) and by utilizing
the Baker—Hausdorff theorem it is seen that C
equals —ih{m) if double and higher order com-
mutators of hA and h{m) are neglected, and if
{m) does not vary appreciably with /. In this case
eq. (2.8) results, and the procedure is of the third
order in h. Among the neglected terms the most
troublesome for stability analysis are of the order
h3 /8%, where § is the size of the spatial increment
(which is proportional to the inverse of the spec-
tral resolution in the reciprocal space). This esti-
mate appears favourable when compared to the
usual # /8% value found in difference methods for
this type of parabolic equations. An additional
error is introduced by using m evaluated at the
current value of ¢ for {(m). Here, however, the
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accuracy can be improved (for example by devis-
ing a self-consistent iteration procedure [11}) at the
expense of computer time and memory require-
ments.

The overall one-step procedure for both field
components 4,, 4, is given by:

Ax(p’ tn+1) = (MPR)Ax(p’ tn) - lh - hzmn/z’

(2.9a)
A4,(p. 1,,1) = (MPR)4,(p, ,), (2.9b)
where
(MPR) = e'h4/2 g7 1hmn gih4/2 (2.10)

represents the medium propagator.

The complete sequence of operations then looks
as follows. Starting from some suitably chosen
initial field A(p, 0), this field is free-propagated
for an interval /2 to the first correction sheet,
where medium correction (over the whole interval
h) is performed; the resulting field is propagated
for another h/2, and at the end the inhomoge-
neous part —ih — h?m, /2 is added to the x-com-
ponent. This completes one step in time. The
procedure is then repeated for as many 4 steps, or
as many correction sheets as needed.

This relatively simple code is easy to imple-
ment. For calculation of the Fourier transform we
use an FFT algorithm. In order to prevent reflec-
tion from the grid edges and spillover effects [11],
the field is damped close to the edges. To avoid
occurrence of the saw-tooth instabilities, after cer-
tain number of time steps a data-smoothing is
performed.

The code equally well applies to the more com-
plete case when ion inertia is taken into account,
and a strong Landau damping of ion waves as-
sumed. This case is described by a coupled set of
equations for the electric field and plasma density
[2-7}):

10,A+AA4 —(x+pN)A =%,
ydt, — AN = A|4)?,

(2.11a)
(2.11b)

where v is the damping factor. While the analysis
of eq. (2.11a) proceeds as before, numerical treat-
ment of eq. (2.11b) requires some modifications.
In order to make a simple code we used the

following scheme:
N,,, = (FT) " (exp)(FT)N, + (FT) "’

X [(exp) — 1}(FT) 4,7, (2.12)

where N, denotes N(p,?,) and (exp) denotes
exp(—q*h/v). This scheme, as is obvious from our
results, suites our qualitative analysis perfectly well.
For a better quantitative reliability however, a
more careful treatment of the medium correction
procedure is needed.

3. Results

In figs. 1-4 we represent some outputs corre-
sponding to various physical situations considered
in refs. [6,7]. The computations are done on an
IBM 360 with an IBM 1627-11 drum-plotter on-
line, and in standard FORTRAN IV.

H}o

X=-35 X=00 X=35

Fig. 1. Development and collapse of a soliton-like structure in
the electric field for p =1 and in one spatial dimension. The
collapse process consists in ever increasing height of the peak
with simultaneous decrease in spatial extent of the soliton. The
initial field used was the stationary solution (3,4 = 0) whose
stability is under question.
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X=-20 X=20

Fig. 2. Same as fig. 1, but for different input and integration
parameters. The input for 4 was a displaced exponential:
exp(iax)+ b multiplied by a damping function. Development
of a central quasi-stable almost stationary soliton is observed.

In fig. 1, occurrence of the modulational insta-
bilities in the stationary solution (3,4 = 0) with
development and collapse of a soliton structure in
1 + 1 dimension is depicted. The stationary solu-
tion used as the input is obtained by solving the
(complex) second Painlevé equation:

824(x) = (x—pla?) A =1, (3.1)

with the help of the DE package [12]. In the region
x > 0, where a blow-up of the numerical solution
is possible, an extrapolation to the asymptotic
solution —m(G, + A4,) is used, where G,(x) and
A,(x) represent the Airy functions [13]. We put
512 points across the grid and used 40 time steps.

The execution took 18 min of elapsed time (plot-
ting included), with approximately 7 min used for
the initialization by the DE package.

In fig. 2, a spatiotemporal emission and devel-
opment of a slowly growing soliton-like perturba-
tion in 1+ 1 dimension is presented. Additional
collapsing structure is seen outside the displayed
interval. The stability of the soliton here is en-
hanced by the smoothing procedure which intro-
duces a local damping, and whose effect is more
pronounced when there are fewer points across the
grid. Numerical procedure is the same as in the
previous example, only the initial field and various
integration parameters are different. This time only
128 points are used, and 200 time steps. The
elapsed time amounted to 9 min.

Figs. 3 and 4 are obtained by integration of the
system of equations (2.11) in 2 + 1 dimensions,
with 4 taken along the x-axis. The initial field 4,
is chosen as a hyperbolic secant in the x-direction,
while the initial density N, = —|4,|? is modulated
to induce a collapse process. The collapse process
consists in unbounded localization of the electric
field inside a density cavity of ever increasing
depth and decreasing spatial extent. The value of
ky varied from —a/2 to /2 over the whole of the
y-interval. Fig. 3 represents a two-dimensional in-

/ )’=7.5

y=-75

10
X=~75

Xx=00

X=75

Fig. 3. Profile of the electric field intensity in two spatial dimensions for p=1 at ¢ = 1.5, egs. (2.11), with two collapsing peaks. The

input was % sech(x) times a damper.
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/y=75

Fig. 4. The density profile corresponding to fig. 3. Value of the damping coefficient in eq. (2.11b) was y =10. The input for N was
~ (1 +cos ky)sech®x, with ky varying approximately from — /2 to n/2 over the whole of the y-interval.

tensity distribution at ¢+ = 1.5 and fig. 4 the corre-
sponding density profile. It is seen that deep den-
sity cavities coincide with the peaks of the electric
field. Taking of these profiles on a 64-by-64 grid,
including the plotting on four intermediate time
points took 35 min of elapsed time.
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