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An efficient and reliable numericalalgorithm for solution of the driven nonlinearSchrodingerequation:

i8~A(x,y,t)+i~A —(x — pIA~
2)A=

and Zakharov’s equationsin 2 + I dimension is presented.The algorithm is an FFT-basedmodified thin-sheetcorrection

scheme.

1. Introduction ment of DNLSE include the time-averaged
Crank—Nicholsonprocedure[3], Numerovscheme

The driven nonlinear Schrodinger equation in space,with a leapfrogin time[6], anda method
(DNLSE)describesresonantabsorptionof electro- of spectralrepresentationof the derivatives,with
magneticwavesandgenerationof densitycavities nonlinearitiescomputedvia Fourier transformto’
in an inhomogeneousplasma when the effect of configurationspace[7]. Other spectralalgorithms
ion inertia is neglected[1—3].Formation of the are usedas well [8], but they bear little resemb-
cavities is accompaniedby the developmentof a lanceto the methoddescribedin this paper.
transientsolitarywavestructurein the electromag- While in spirit similar to that of ref. [7], our
netic field (“soliton flash” [4]). In view of the method containsmany new featureswhich render
problems concerning the stability of stationary it useful and worthwhile for presentationto the
solutionsin 1 + 1 dimension(onespace,onetime) computerorientedphysicscommunity.Themethod
[3—6],as well as the collapseof Langmuirsolitons representsa modification of the thin-sheetgain
in 2 + 1 dimensions[2,7],we presentan alternative procedure[9—11]developedearlier for the mode
reliable and efficient method for numericalsolu- calculationin a high-powerlaser.
tion of DNLSE. The methodis also appliedto the
casewhenion inertia is taken into account,anda 2. Numericalprocedure
strongLandauor collisional dampingof ion waves
assumed.This caseis describedby a coupledset of The driven nonlinearSchrodingerequationfor
differential equations (Zakharov~equations)for a two-componentscaledelectric field A = (As, A~)
the electric field and plasmadensity [2—7]. is of theform [3,6]:

Thealgorithmsthusfar usedin numericaltreat-
ia~A~(p,t) +i.~A~— n1A~= 1, (2.la)

* Supportedin Part by the Army ResearchOffice. ia~A
5(P,t) ±~A~— mA~= 0, (2.lb)
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where m = x — p(~A~~2± A~t2) represents the time steph [10]:
nonlinearmediuminteractionterm (p is the non- A( t ) = e”~’2e1~m> e’~”2A(p
linearity coefficient), ~ 0~+ ~ representsthe P’ nfl

two-dimensionalLaplacian,andp = (x, y). Except — ih — h2(m)/2. (2.8)
for the detailedstructureof m, eq. (2.lb) is in
form analogousto the paraxial wave equation, The first operatorto act on A(p, t,,) is the sameas

which has been treated by the thin-sheet gain in eq. (2.6) or (2.5), only here it acts over the
procedureelsewhere[10,11],and thereforewill not interval h/2 — it is thereforea free-spacepropaga-
be analysedhere. However, the essentialingredi- tor for h/2. The medium correction terms
entsof the thin-sheetgain or correctionprocedure, exp(— i h (m)) and — h2(m)/2 require evaluation
as well as modificationsneededin treatmentof eq. of the meanof m acrossthe (presumablysmall)
(2.la) will be givenhere. timestep.While a moreelaborateproceduremight

Indeed,if in eq. (2.la) m werezero,the remain- be thought of, we simply usem evaluatedat the
ing equationis linear, andthuseasilysolvedby the currentvalueof t for (m). In thismannerwe save
Fourier transformtechnique.In that casewe take computercore spaceand makesimple and effi-
two-dimensionalspatial Fourier transform of eq. cient code. In this approachthe continuoustern-
(2.la) (subscriptx is omitted): poral developmentis approximatedby a seriesof

— 2 medium(or vertex) correctionsin-betweenwhich
ia

1A(q, t) — q A = 6(q), (2.2) the temporaladvanceis achievedby the free-space
where propagation.This is referred to as the thin-sheet

correctionapproximation[9—il].
X(q r) = I dp e~~”A(p t) (2 3) Theerror andstability analysisof the thin-sheet

‘ (2.~)2 ‘ . procedurehavepreviouslybeenperformedin the
context of beam propagationin the atmosphere

is the direct Fourier transform, and
6(q) is the [10] and in a lasing medium[11]. Here we only

two-dimensionaldelta function.Then: outline the crucial steps in this analysiswithout

2 being too rigorous.Looking at eq. (2.7) it is seen
X(q, t) = e’~’2~X(q,0) + e — ~6(q), (2.4) that operator F, which figures in the exponent,

q2 actually presentsa sum of two noncommuting

or in the configurationspace: operatorsh~and h<m). Thereforeadequatecare
mustbe paid to the orderingof theseoperatorsas

A(p t)= (FT)~ e72t(FT)A(p 0)—it (2.5) we advance in time. By writing exp(iF) as
exp(ih~/2)exp(C) exp(ihz~/2)and by utilizing

where (FT) [(FT)1] denotesthe direct [inverse] the Baker—Hausdorfftheorem it is seenthat C
Fourier transform. Therefore,a formal solution of equals —ih(m) if double and higher ordercom-
eq. (2.la) with m = 0, mutatorsof hL~and h<m) are neglected,and if

A” t’~— “~A~ 0~— it (2 6~ (m> doesnot varyappreciablywith h. In this case~p, — e ‘.P~ / / eq. (2.8) results,and theprocedureis of the third

actually correspondsto a sequenceof operations order in h. Among the neglectedterms the most
describedby eq. (2.5). An equally formal solution troublesomefor stability analysisareof theorder
of the full eq. (2.la): h3/84,where 8 is the sizeof the spatial increment

(which is proportional to the inverseof the spec-
A(p, t) = elF A(p, 0) — if eF’ , (2.7) tral resolution in the reciprocalspace). This esti-

0 mate appearsfavourable when comparedto the

with F= ti.~— f~m= t(zl — (m)), can also be usualh/62 value found in differencemethodsfor
broken into a sequenceof operationsto be per- this type of parabolic equations. An additional
formedupon the initial field A(p, 0). We preferred error is introducedby using m evaluatedat the
a simple sequencecorrectup to the third order in current value of t for <m). Here, however, the
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accuracycanbe improved (for exampleby devis- following scheme:
ing a self-consistentiterationprocedure[11])at the
expenseof computertime and memory require- N~+ = (FT) - ‘(exp) ( FT) Pvc1 + (FT)
ments. x [(exp) — l](FT)IA~I

2, (2.12)
The overall one-stepprocedurefor both field

componentsA~,A~is given by: where N~ denotesN(p, t~) and (exp) denotes
exp(—q2h/y).Thisscheme,asis obviousfrom our

A~(p~In + ~)= (MPR)A
2(p, t~)— i h — h

2m~/2, results,suitesourqualitativeanalysisperfectlywell.

(2.9a) For a better quantitative reliability however,a
more careful treatmentof the mediumcorrection

A~(p,tn±i) = (MPR)A~(p,t,,), (2.9b) procedureis needed.

where

(MPR) e’~~”~2e1hm~ e’~’~2 (2.10) 3. Results

representsthe mediumpropagator. In figs. 1—4 we representsome outputs corre-
Thecompletesequenceof operationsthen looks spondingto variousphysicalsituationsconsidered

as follows. Starting from some suitably chosen in refs. [6,7]. The computationsare done on an
initial field A(p, 0), this field is free-propagated IBM 360 with an IBM 1627-Il drum-plotteron-
for an interval h/2 to the first correction sheet, line, andin standardFORTRAN IV.
wheremediumcorrection(over the whole interval
h) is performed; the resulting field is propagated
for anotherh/2, and at the end the inhomoge-
neouspart —ih — h2m~/2is addedto the x-com-
ponent. This completes one step in time. The
procedureis then repeatedfor as many h steps,or
as many correctionsheetsas needed.

This relatively simple code is easy to imple-
ment. For calculationof the Fourier transformwe
use an FFT algorithm. In order to preventreflec-
tion from the grid edgesand spillover effects[11],
the field is dampedclose to the edges.To avoid
occurrenceof the saw-toothinstabilities,after cer- t=4.0

tam number of time steps a data-smoothingis
performed. t=30 t-30

The codeequallywell appliesto the morecom-
plete casewhenion inertia is takeninto account,

t=20 1=20
and a strong Landau damping of ion waves as-
sumed.This caseis describedby a coupledset of
equationsfor the electric field andplasmadensity 1.0

[2—7]:

i8,A +LtA —(x+pN)A =~, (2.lla) -- t=O.oX 35 X0Q X=35

Y8IN — = ~IAI2, (2.llb) Fig. 1. Developmentandcollapseof a soliton-likestructurein
the electric field for p = I and in one spatialdimension. The

wherey is the dampingfactor. While the analysis collapseprocessconsistsin ever increasingheight of thepeak

of eq. (2.lla) proceedsas before,numericaltreat- with simultaneousdecreasen spatialextentof thesoliton.The

ment of eq. (2.1ib) requires some modifications, initial field usedwas the stationarysolution (a,A = 0) whose

In order to make a simple code we used the stability is underquestion.
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The executiontook 18 mm of elapsedtime (plot-

___________ _____________ the initialization by the DE package.

___________ ____________ ting included),with approximately7 mm used for__________ io In fig. 2, a spatioternporalemissionand devel-opmentof a slowly growing soliton-like perturba-tion in 1 ± I dimensionis presented.Additional
X=-20 X-20 collapsing structureis seenoutside the displayed
Fig. 2. Same asfig. I, but for different input and integration interval. The stability of the soliton here is en-
parameters.The input for A was a displaced exponential: hancedby the smoothingprocedurewhich intro-
exp(iax)+b multiplied by a damping function. Development ducesa local damping,and whoseeffect is more
of a central quasi-stablealmost stationary soliton is observed.

pronouncedwhenthereare fewer pointsacrossthe
grid. Numerical procedureis the same as in the
previousexample,only the initial field andvarious

In fig. 1, occurrenceof the modulationalinsta- integrationparametersare different.This time only
bilities in the stationary solution (8,A = 0) with 128 points are used, and 200 time steps. The
developmentandcollapseof a soliton structurein elapsedtimeamountedto 9 mm.
1 + 1 dimensionis depicted.The stationarysolu- Figs. 3 and4 are obtainedby integrationof the
tion used as the input is obtainedby solving the systemof equations(2.11) in 2 + I dimensions,
(complex)secondPainlevéequation: with A takenalong the x-axis. The initial field A

0

8~A(x)= (x —pjAI
2)A = 1, (3.1) is chosenasa hyperbolicsecantin the x-direction,

while the initial densityN
0 = —1A01

2 is modulated
with the help of the DE package[12]. In theregion to inducea collapseprocess.The collapseprocess
x >> 0, where a blow-up of the numericalsolution consistsin unboundedlocalization of the electric
is possible, an extrapolationto the asymptotic field inside a density cavity of ever increasing
solution —ir(G, ±A

1) is used,where G1(x) and depthand decreasingspatialextent. The valueof
A,(x) representthe Airy functions [13]. We put ky variedfrom —‘rr/2 to ‘rr/2 over the wholeof the
512 points acrossthe grid andused40 time steps. y-interval. Fig. 3 representsa two-dimensionalin-

y.~75

1.0 y=0.0

y=75
x——75 X—00 x=75

Fig. 3. Profile of the electric field intensity in two spatial dimensionsfor p = I at t = 1.5, eqs. (2.11), with two collapsing peaks.The
input was.t sech(x) times a damper.
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Fig. 4. The densityprofile correspondingto fig. 3. Value of the dampingcoefficient in eq. (2.Ilb) was -y =10. The input for N was
— (I +cosky)sech

2x,with ky varying approximatelyfrom — ir/2 to ‘rT/2 over the whole of they-interval.

tensitydistribution at t = 1.5 and fig. 4 the corre- N.R. Pereira and G.J. Morales, Phys. Fluids 24 (1981)

spondingdensityprofile. It is seenthat deepden- 1812.
[8] J.P. Armstrong,Phys.Fluids 10 (1967) 1269.

sity cavitiescoincidewith the peaksof the electric S.A. Orszag J. Fluid Mech. 49 (1971) 75; Stud. AppI.
field. Taking of theseprofiles on a 64-by-64 grid, Math. 50 (1971)293.

including the plotting on four intermediatetime Y. Salu and G. Knorr, J. Comput.Phys. 17 (1975)68.

points took 35 mm of elapsedtime. H. Schameland K. Elsasser,J. Comput.Phys.22 (1976)
501.
Y.S. Sigov and Y.V. Khodirev, DokI. A.N. SSSR 229
(1976)833.
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