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Chaos in photorefractive four-wave mixing with a single
grating and a single interaction region
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We show that the standard model of four-wave mixing in a photorefractive crystal predicts the appearance of
deterministic chaos. In this model there is a single (transmission) grating and no external or internal (intra-
cavity) feedback. The intensity of the phase-conjugate wave is found to exhibit a period-doubling route to
chaos on variation of the intensity of the probe beam and the linear absorption coefficient. The crucial ele-
ments in obtaining chaotic behavior are operation above the threshold for self-oscillation and the presence of an
external electric field, which causes a shift in the optical frequency of the phase-conjugate wave.

The importance and potential applications of optical
phase conjugation today seem to be universally accepted.'
Nonetheless, before a reliable high-gain device can be
made and put to use, possible regions of its unstable opera-
tion should be explored. Such regions seem to abound,
for example, in barium titanate (BaTiO3 ), one of the most
interesting photorefractive crystals available.2 At the
same time, regions of instabilities with possible transi-
tions to chaos in any novel nonlinear system present an
interesting subject for investigation. With this in mind,
in this paper we set out to investigate instabilities and the
transitions to chaos in single-grating optical phase conju-
gation in a photorefractive crystal. Such a simple geome-
try seems to be especially interesting in view of the recent
developments in the field.2 4

The initial observations of deterministic chaos in
BaTiO3 phase-conjugate mirrors without external feed-
back involved a self-pumped geometry of multiple interac-
tion regions and multiple gratings, 3 4 which is easy to
realize experimentally but sufficiently complicated to ob-
scure the real mechanisms for chaotic behavior. Further,
the occurrence of chaos has been demonstrated in other
resonator geometries, in which one mirror is a phase-
conjugating element. In such geometries the presence of
all necessary ingredients for dissipative chaos is easily
ensured: Nonlinearity arises from the phase-conjugate
mirror, feedback is contained in the cavity, and driving is
provided by the pumps. Indeed, a wealth of chaotic phe-
nomena has been observed in phase-conjugate resonators.5

In this paper, however, we will display the emergence of
chaos in a model for an externally pumped phase-conjugate
mirror that is formed by single-grating four-wave mixing

(4WM) with a single interaction region. No other feed-
back mechanisms, such as internal corner reflection (cat
mirror6 ) and external mirrors, are used in our model. We
show that even ordinary 4WM, with optical feedback pro-
vided only by the energy and phase transfer between the
waves, is sufficiently nonlinear to produce unstable phase-
conjugate output. In previous studies7 on instability in
externally pumped phase conjugation and in wave mixing
in Kerr-like media, it was shown that the relation be-
tween the material response time and the transit time of
light in the nonlinear medium was important for the in-
stabilities observed (the instabilities were the largest
when these times were comparable). We note that, be-
cause of the considerable slowness of the photorefractive
effect, the light transit time plays no appreciable role
here. The results reported here are obtained by numeri-
cal integration of coupled wave equations (in the slowly
varying envelope approximation), augmented by a time-
dependent equation for grating formation.

We consider 4WM in photorefractive crystals, which is
produced by a transmission grating in the regime of ortho-
gonally polarized pumps.8 The geometry that we assume is
shown in Fig. 1. The photorefractive crystal is illuminated
by two counterpropagating pump waves, A and A2 (or-
thogonally polarized), and by probe wave A4 (polarization
the same as that of A). The generated phase-conjugate
wave (PCW) A3 propagates in a direction opposite that
of the probe, and these two waves are orthogonally po-
larized. We assume that an external electric field is
applied across the crystal (through high voltage, V in
Fig. 1). In our studies of the dynamics of this system we
will start with the probe beam A4 equal to zero and then
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Fig. 1. Four-wave mixing geometry considered in the text. The
pump waves Al and A2 are orthogonally polarized, A4 is the probe,
and A, is the phase-conjugate output. V is the high-voltage
source of the electric field.

increase its amplitude in order to examine its effect on
the phase-conjugate output. The equations to be solved
are of the form

aAl/az = QA4 - aA1, (la)

aA4*/az = -QA,* - aA4 *) (lb)

aA2*/az = -QA3* + aA2*, (lc)
aA3/az = QA2 + aA3, (1d)

.raQlat + ED + Eq + iE QTc, Em + ED + iEo
Y oEq + ED ED + iEo

Io ED EM + ED + iEo

x (AlA4* + A2*A3), (le)

where Q is the complex amplitude of the index grating
(with the corresponding relaxation time x), Io = 1 IAjA2 is
the total light intensity, ED, Eq, and EM are the character-
istic electric fields describing the crystal (according to the
theory of Kukhtarev et al.'), Eo is an external electric
field, a is the linear absorption coefficient, and Yo is the
coupling constant, which depends on the material parame-
ters (electro-optics coefficients) and geometrical factors.

Equations (1) are derived from Maxwell's equations ac-
companied by the theory of the photorefractive process.
An exhaustive discussion of these equations as well as the
role of all material parameters can be found in Ref. 10.
Here we note only the specific role of the electric field,
which appears in Eq. (le) in a complex (imaginary) pa-
rameter (E0 itself is real). When Eo = 0, the phase shift
between the index grating Q and the interference pattern
(AIA4 * + A2*A3) is exactly Ir/

2 . The phases of waves do
not change in the interaction, but energy is transferred
between the waves. When the electric field E0 is present,
the photorefractive phase shift is no longer equal to IT/2 ,
which results in the change of the phases of the waves dur-
ing interaction (phase transfer). This effect has a pro-
found consequence in the energy transfer process, which
becomes strongest when the waves have different optical
frequencies." When the waves have different optical fre-
quencies, the interference pattern moves in the crystal.
The extra phase shift induced by the time lag between the

grating and the interference pattern can restore the 7r/2
phase shift and maximal energy transfer.

In Eqs. (la)-(ld), time derivatives have been neglected
since propagation delay is short compared with the time
needed for grating formation. One can regard the wave
amplitudes as following the grating evolution adiabatically.
The procedure for solving Eqs. (1) is as follows. Owing to
the form of the equations, temporal and spatial integra-
tions can be separated. Since the crystal response is slow,
one can divide the marching variable (time) into small in-
tervals tN in which the 4WM process may be considered as
diffraction of waves by the quasi-stationary index grating
Q(tN, z). This effect is governed by Eqs. (la)-(ld), which
actually break into two sets of coupled linear equations for
amplitudes Al and A4 [Eqs. (la) and (lb)] and A2 and A3
[Eqs. (lc) and (id)]. These sets of equations may be easily
solved numerically (by using, for instance, the Runge-
Kutta method) with the following boundary conditions:
Al(tN, z = 0) Alo, A2(tN, z = ) _ A21, A(tN, Z = 1) 0,
and A4(tN, z = 0) _ A40, where A10, A21, and A40 are the
amplitudes of the fields that are incident upon the crystal
(in the planes z = 0 and z = 1). Energy exchange be-
tween the waves leads to a change in the wave interfer-
ence term AlA4 * + A3A2*, which in turn modifies the
index grating Q through Eq. (le). This new grating in
the next time interval tN+l causes further energy ex-
change, a new interference pattern, and so on.'0 In nu-
merical calculations the value of the time increment
At = (tN+,l - tN) must be much smaller than the charac-
teristic time scale of the photorefractive process, which
is given by (EM + ED + iEo)/(ED + Eq + iEo)T. We per-
formed integration while decreasing time step At until the
difference between results was less than the required
accuracy.

It is well known from the steady-state theory of 4WM
that a PCW may be generated even without a probe
beam.' 2 This effect, known as self-oscillation, occurs
only when the nonlinear coupling is sufficiently large. In
our numerical simulations we always assume that the cou-
pling constant exceeds the threshold for self-oscillation,
i.e., the coupling strength yol (1 is an interaction length)
without E0 is chosen to be -4, while the self-oscillation
threshold is -2.3 If there were no electric field applied
to the crystal, the generated conjugate wave would have
the same optical frequency as that of the pumps. The
presence of the external electric field qualitatively changes
the mixing process. First, it increases the magnitude of
the coupling constant. Second, this field induces an addi-
tional phase shift in the coupling constant, which results
in a frequency shift of the generated PCW in the pure
self-oscillation case (A40 = 0).14 The value of this fre-
quency shift is such that the full phase shift between the
index grating and the interference pattern in the steady
state is 7r/2. We are going to examine the effect of raising
the probe intensity (I40) above zero and will consider the
case in which all input fields have the same frequency and
all boundary values are independent of time. For the
characteristic electric fields in the examples considered,
we assume that ED = 1 kV/cm, Eq = 5 kV/cm, and EM =
100 kV/cm, which are consistent with the experimental
values for BaTiO3. The external electric field is taken to
be E0 = 3 kV/cm in one example and E0 = 2 kV/cm in
the other.
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The results of numerical simulations reveal that for
the case discussed here, i.e., operation above the self-
oscillation threshold, the presence of the nonzero input
probe beam leads to unstable behavior of the intensity of
the conjugate wave. The ensuing dynamics depends
strongly on the value of the parameters and may become
quite complex. We show the instances of this behavior in
Fig. 2, where we present the time dependence of the out-
put intensity I3(t, z = 0) as well as the phase-space portrait
of the PCW amplitude A3(t, z = 0). It should be noted
that in the case of pure self-oscillation (A40 = 0) the
phase-space portrait reduces to the circle that indicates
the constant frequency shift of the conjugate wave that is
caused by the electric field. Taking the extremes of the
output intensity (after any transients have decayed) for
each value of the control parameter, we obtain the bifur-
cation diagrams shown in Figs. 3-5. In Fig. 3 we present
the bifurcation diagram obtained by variation of the
probe intensity 40 (all intensities are normalized to total
pump intensity I10 + I21). It is evident that the diagram
does not form a single branch, even for very weak input.

The reason is that for the parameters used the effective
coupling strength is very large, yll = jyol[(Eq + ED)/ED]
[(ED + iEo)/(ED + Eq + iEo)]l 12, and therefore even
for very small probe intensities the output conjugate wave
is unstable. However, integration of Eqs. (1) for the case
of pure self-oscillation, e.g., when A40 = 0, gives a stable
intensity for the PCW

When the electric field is smaller, as in Fig. 4 (Eo=
2 kV/cm), self-oscillations are clearly seen to start as single
branch or, rather, a single point and to give rise to a time-
independent steady-state intensity. This steady state
readily bifurcates as the (initial) intensity of the probe
(I40) is increased. However, at some even higher inten-
sity, after chaos has been reached, the intensity of the
conjugated signal remerges into a single branch. Such in-
verse bifurcations have already been observed in similar
optical systems, such as optical bistable devices 5 and
phase-conjugate resonators.5 Remerging bifurcations are
characteristic of low-dimensional systems with multi-
dimensional parameter space and with symmetries in this
space that leave the equations of motion invariant. 6 The
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Fig. 3. Bifurcation diagram representing PCW intensity I3o as a
function of probe intensity I40. The parameters used for this dia-
gram are yol = -4, a = 0, Ijo = 0.3, I21 = 0.7 (intensities are
normalized to total pump intensity).
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3 kV/cm). (B) is an enlargement of the region of 0.06 < a < 0.12
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Fig. 4. Same as Fig. 3 except that the external electric field has
been changed from Eo = 3 kV/cm to Eo = 2 kV/cm.

route to chaos is seen to be period doubling (direct or in-
verse) with periodic windows, which is characteristic of
chaos in few dimensions. We have measured the fractal
dimension of the attractor at I40 = 0.13 by using the corre-
lation integral and embedding technique of Grassberger
and Procaccia'7 to find D 2.4 (Fig. 6).

The origin of chaos in this simple geometry seems to be
different from that in the geometries reported earlier,3 4

for which the existence of multiple interaction regions or
cavities formed by coated C faces of the electro-optic crys-
tals seemed to be crucial. Further, those geometries
enforced multiple-grating operation, which makes theoret-
ical analysis difficult. In our example the strong coupling
of waves, which creates a single transmission grating, is
sufficient to cause self-oscillations (at a shifted optical
frequency). This leads to the recording of a moving grat-
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Fig. 6. Log-log plot of the correlation integral C(r) versus dis-
tance r for a few embedding dimensions. The slopes of these
curves in the range in which they are parallel should give the
fractal dimension of the attractor.
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ing in the crystal. On the other hand, the presence of the
probe beam, which has a frequency equal to those of the
pumps, gives rise to a stationary index grating. The PCW
is always formed by the diffraction of the pump beam A2
on the index grating. Since the contributions to the PCW
that come from diffraction of the pump on different grat-
ings (stationary and moving) have different frequencies,
the output intensity is unstable. The situation is even
more complicated: Each of the four waves presented in
the crystal diffracts on the various gratings, which leads
to the appearance of components with different optical
frequencies and complex time behavior. These instabili-
ties are then driven to chaos by changing some of the avail-
able control parameters, for example, the intensity of the
probe beam, the external electric field, or even the linear
absorption coefficient. In addition, in our case the pres-
ence of the external electric field plays a significant role.
Our numerical simulations show that output is stable
when Eo = .18 In general, an applied electric field in-
creases the nonlinear coupling (through the coupling con-
stant) and causes an additional phase shift, which leads to
the formation of the moving gratings (running holograms)
in the photorefractive crystal. Our system behaves as a
driven pendulum does. When the driving beam is absent
(A40 = 0), we have free (and stable) generation of the con-
jugate wave, which is degenerate in optical frequency when
Eo = 0 or has a shifted optical frequency when E0 0.
With driving (Ao 0) and an applied electric field, the
system exhibits temporal pulsations and chaos. 9 This
is qualitatively different from the situation reported by
Gauthier et al.,4 in which the multiple-grating model of
4WM (with real coupling constants) could not produce
unstable output in single-grating regime.

From Figs. 3 and 4 it is evident that strong probe inten-
sity suppresses instabilities of the PCW This effect re-
sults from the nature of photorefractive coupling, which
depends on the modulation of the interference pattern
formed by interacting waves and not on their intensities.
The presence of the probe beam A4 changes the gain con-
ditions for the oscillation with shifted frequency. The
larger the intensity I40, the smaller the modulation of the
interference pattern; eventually nonlinear coupling be-
comes too weak to support oscillation with shifted optical
frequency. The grating in the crystal, formed by waves
with the same optical frequency, is stable, which leads to
the stable intensity of the conjugate wave.

Finally, we present an interesting example of the bifur-
cation diagram in which variation of the linear absorption
coefficient was the driving parameter2 0 (Fig. 5). This dia-
gram was generated in the same manner as Figs. 3 and 4,
the only difference being the choice of the parameter to
be varied. Figure 5 displays suppression of instabili-
ties by linear absorption. This is a plausible behavior:
Increased absorption means stronger dissipation, and
strongly attenuated systems are usually more stable, with
their dynamics tending to go to fixed points in the phase
space. The phase-conjugate output, which is chaotic for
zero absorption, is seen to remerge into a single branch
with an increasing absorption coefficient. Between the
cascades of inverse bifurcations, periodic windows open.
One such instance is depicted in Fig. 5(B), which is an
enlargement of the region of absorption 0.06 a 0.12,

from Fig. 5(A). A period 6 attractor is seen to end up in
an interior crisis, exploding into two chaotic bands. Thus,
while increased absorption suppresses chaos globally, it
may sometimes induce chaos locally.

In summary, we have demonstrated the appearance of
chaos in a model of optical phase conjugation in a single
4WM interaction region. When a single transmission
grating regime of operation is assumed, the phase-
conjugate output has been driven to chaos by the variation
of several different control parameters. No additional
feedback mechanisms are provided other than the
standard geometry of 4WM in a photorefractive medium.
Low-dimensional chaos has been observed, with period-
doubling routes to chaos. The crucial element in ob-
taining chaos is operation above the threshold for
self-oscillation, i.e., strong enough coupling of the waves.
Another important ingredient is the presence of an exter-
nal electric field, which causes variable phase shift in the
coupling constant and a shift of the optical frequency of
the PCW Once self-oscillation instabilities begin, the se-
quence and complexity of the bifurcation diagram that de-
scribes periodic or chaotic behavior strongly depend on
which parameter is varied. If the probe intensity is
varied, then we have competition of the oscillatory mo-
tions (with different frequencies), which results in compli-
cated bifurcation diagrams. If the absorption coefficient
is varied (increased), then we have gradual suppression of
chaos by a series of inverse bifurcations. In both cases
the PCW eventually reaches a single steady-state value.

Although we have discussed 4WM in the special case of
orthogonally polarized pumps, it should be emphasized
that the results presented here also apply in the conven-
tional geometry with parallel polarized pumps. These
two arrangements are completely equivalent as far as
formal equations are concerned.2 ' In the framework of
the parallel polarized pumps, the process of inducing un-
stable behavior in 4WM would be a case of an externally
driven, double phase-conjugate mirror. When the input
probe wave has zero amplitude, we have exactly the case of
the double phase-conjugate mirror (a state of stable self-
oscillation).
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