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Optical turbulence in phase-conjugate resonators
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Instabilities and transition to optical turbulence in a phase-conjugate resonator are numerically investigated under
the influence of more than one control parameter. The dynamics of intracavity modes, including one transverse
spatial dimension, is considered under various conditions and in different regions of the multidimensional parame-
ter space. A great variety of phenomena is observed, including Feigenbaum, intermittency and the Ruelle-Takens-
Newhouse route to chaos, spatial filamentation and making the beam profile chaotic, coexisting attractors and
boundary crises, optical bistability and dynamical effects, and inverse bifurcations. The route to high-dimensional
chaos in this infinitely dimensional dissipative dynamical system is monitored qualitatively and quantitatively by
using embedding techniques, Fourier and Lyapunov spectra, Poincare sections, and bifurcation diagrams. We find
similarities and significant differences with other infinite systems, notably with fluid dynamical flows and a time-
delay differential equation.

1. INTRODUCTION
The problem of turbulence remains one of the few un-
resolved old scientific problems. Although significant
progress has been made lately toward understanding low-
dimensional chaos,' owing largely to the advent of fast com-
putational methods and machines (and clever experiments),
the fully developed turbulence, so it seems, is waiting for the
next generation of supercomputers. In this paper we would
like to add to the understanding of the low-dimensional
turbulence in an infinitely dimensional system by an analy-
sis, necessarily numerical, of the dynamics of intracavity
modes in a phase-conjugate resonator (PCR).2 Nonlinear-
optical systems3 seem to be especially well suited for such an
analysis, as compared, for example, with the fluid Navier-
Stokes systems 4 because they can be described in terms of
relatively simple models that permit efficient numerical
simulation and also are amenable to experimental verifica-
tion. Furthermore, they exhibit a great variety of interest-
ing dynamical phenomena, as is witnessed in the rapidly
developing field of laser instabilities in previous literature 5

and in this special issue and as is presented by this paper.
The system of interest here is a PCR in which the phase-

conjugate mirror (PCM) is represented by a nonlinear Kerr-
like medium operating in the thin-hologram regime. This
system has been considered by us already in a few publica-
tions6-8 and in various degrees of approximation and nu-
merical sophistication. Here, we continue and also summa-
rize our investigations of the dynamical responses of the
cavity by presenting a few interesting study cases concerned
with the fast and slow response of the medium, filamenta-
tion, and spatial chaos of the intracavity field and a well-

documented Ruelle-Takens-Newhouse (RTN) transition to
chaos through a few bifurcations of a limit cycle. The mode
of presentation will be rather descriptive, leaving out mathe-
matical intricacies and numerical details.

Therefore we will not dwell much on the introduction and
the theory of the model, as they are amply described in
earlier publications.7 8 The assumed interaction geometry
is depicted in Fig. 1, where F0 and Bo denote two counter-
propagating laser beams pumping the Kerr-type PCM locat-
ed at z = 0. A curved normal mirror with a spatial aperture
in front of it is positioned so as to return the first-order
scattered light at an angle 0 back into the resonator. The
size of the aperture is one of the control parameters in the
problem, as are the pump intensities. The ther control
parameters include focusing or defocusing in the Kerr medi-
um, Fresnel number of the resonator, curvature and reflec-
tivity of the normal mirror, and the size of the Fourier filter
(i.e., the number of Fourier components used in the numeri-
cal calculations). Not all these parameters will be varied in
our numerical experiments.

The numerical procedure consists of the following. The
paraxial wave equation for the forward- and the backward-
propagating field inside the resonator is solved by using a
fast-Fourier-transform (FFT) spectral technique. One
transverse spatial dimension is specifically included, so that
we consider a striped-resonator configuration. We have no
reason to believe that inclusion of the other transverse di-
mension would dramatically change our conclusions.
Phase-conjugate reflection off the PCM is achieved by using
reflectivity formulas from Ref. 7 and by solving the diffusion
equation for the phase shift accumulated in a PCM by using
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Fig. 1. Geometry of four-wave mixing PCR used in our simula-
tions. It permits first-order scattered PC light at an angle 0 to be
reflected back into the resonator.

a fourth-order Runge-Kutta method. Thus the transverse
coupling is provided by diffraction in -the cavity and by
diffusion in the Kerr medium. Depending on the case stud-
ied, the diffusion is sometimes set to zero (fast media), and
sometimes no explicit reflectivity formula is used (slow me-
dia). The programs are run on a vectorized multiproces-
sor machine. The full description of our numerical scheme,
again, can be found in Refs. 7 and 8.

An indication of the complexity and richness of the phe-
nomena in the general case is revealed by considering a
simplified plane-wave two-dimensional-map approximation

Fig. 2. Bifurcation diagram of a one-dimensional PCR plane-wave model represented by a first-order Bessel function map, Eq. (1). The
driving parameter A is proportional to the pump intensity.
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Fig. 3. A (a) periodic and a (b) chaotic response of the phase-conjugate cavity under an increasing number of spatial Fourier components.
The transverse profile of the phase-conjugate field 1Ebl (see Fig. 1) is shown at different times. The displayed time intervals amounted to 150
medium response times in (a) and 2O0 in (h), The time scale is displaced in both cases, i.e., initial transient intervals are not shown. The pump
intensity equals Ip = 1.2 in units of the threshold oscillation intensity, and the threshold (initial) signal Ef is Gaussian. It slowly gets deformed
as the pump intensity is increased from 1. to 1.2, more rapidly so for case (b).
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Fig. 5. Temporal sequences of the points at various transverse
locations, from the tip of the beam, x = 0, to x = 0.5 in the wings (in
units of the backward pump beam waist). The case presented is
between (a) and (b) from Fig. 3, showing intermittent chaotic bursts.
It is interesting to note that points at different transverse locations
execute different periodic motions, but they all go chaotic simulta-
neously, indicating strong transverse correlations.
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Fig. 4. Spatial spectral decomposition of the beam profiles from
Fig. 3, obtained by a FFT algorithm.

to the problem, as presented in Ref. 6. It was discovered in
Ref. 6 that the intracavity intensity after consecutive round
trips obeys a map relation

Xn+l = AJ (X (1)

and the phase executes a quasi-periodic distance-preserving
hopping. Here Xn = 4IFOEn12, A = 4plFoBoI2 is the pump-

driving parameter, p is the normal mirror reflectivity, and Ji
is the first-order Bessel function. The dimensionless inten-
sities are measured in units of c/wn2d, where d is the medium
thickness, It is seen that when the pump intensity is in-
creased to a certain value of A, the intracavity field becomes
unstable. When the intensity undergoes a period doubling,
the phase becomes indeterminate but not chaotic: the Ly-
apunov exponent of the phase evolution always remains
zero. The dynamical behavior of the intensity, on the other
hand, is complex, owing to the complex form of the mapping
function. Its bifurcation diagram is represented in Fig. 2 as
a function of the pump parameter. It is seen that for low
pump intensity the transition to chaos follows a Feigenbaum
scenario, coming from the inverted-parabola look of the first
lobe of the Bessel function. As the pump intensity in-
creases, the higher lobes of the J1 function come into play,
and the bifurcation diagram past the accumulation point
loses any resemblence to the Feigenbaum scenario. Howev-
er, its global, topological outlook is amenable to an analysis
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TIME

(b)

Fig. 6. (a) Transverse beam filamentation in the case of a defocus-
ing medium and in a low diffraction geometry. The pump intensity
is I, = 3.5, and the first 50 medium response times are followed.
The initial rapid switchup with an overshoot is distinctly visible.
(b) Behavior at different transverse locations is definitely irregular,
even though a coherent fairly stable spatial structure evolves.
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Fig. 7. Same as Fig. 6 but for a higher pump intensity, I, = 4.2, and
after the first 50 MRT have expired.

by symbolic dynamical 9 methods. For example, equations
for the dark accumulation lines running through chaotic
regions or positions of the periodic windows and their struc-
ture are readily found by using symbolic methods. Such an
analysis is performed along the following lines.

The mapping of Eq. (1) in terms of a Bessel function has a
set of zeros and a set of maxima located between the zeros.
Collectively, these points are denoted as the critical points
{xcil of the map. Suppose that in the beginning the input
values for x,, are uniformly distributed and that we are inside
a chaotic region. After just one iteration the new x+l values
will become nonuniform, clustered around the images of the
critical points. Two of these images also define the extrema
of the map, i.e., the boundaries of the output. After many
iterations it is clear that the images of the critical points will
define a set of maxima in the distribution of x, which will
show up in the bifurcation diagram as locations of the accu-
mulation lines inside the chaotic region. Therefore for each
of the critical points a set of polynomials can be defined:

Po0 (A) = XCI,

Pn ,i(A) = AJ,2[Pnt(A)I /2.

(2a)

(2b)

These polynomials, when plotted as functions of A, deter-

Fig. 8. Phase-conjugate beam development for the focusing medi-
um and a high diffraction geometry: (a) depicts the transverse pro-
files and (b) shows the corresponding spatial Fourier transforms.
The region 1-9 in pump intensity is swept up in 250 steps to pin-
point the occurrence of instabilities. The field development is seen
to proceed gradually and symmetrically until Ip 7.5, when the
instability breaks in.
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Fig. 9. Temporal establishment of the asymmetric dancing mode
at Ip = 7.5.
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mine locations of the dark lines embedded in a chaotic re-
gion. For example, all the polynomials for the first zero
(which is not exactly a critical point but behaves like one)
equal zero, and the zero line defines the lower boundary of
the bifurcation diagram. In contrast, the upper boundary is
determined by the first polynomial P1

1 = AJ1
2 (x.J) 12 of the

first, largest maximum of the J1 function. All straight lines

(a)

(b)

100
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Fig. 10. Periodic oscillations at different transverse locations of
the phase-conjugate beam: (a) period 2 at the peak of the beam, (b)
period 4 at x = 0.45, and (c) period 6 at x = 0.6. Period 2 oscillates
at double the frequency. Longer-period subharmonics are also
present.

seen in the diagram actually come from the first-order poly-
nomials of different critical points. Further, locations of the
superstable n orbits (around which periodic windows form in
chaotic regions) are found among the real roots of the equa-
tions Pn(A) = xc for arbitrary i. The details of the symbolic
analysis of the map [Eq. (1)] will be presented elsewhere.

This paper deals with the overall response of a PCR,
including transverse effects, in a numerical setup that close-
ly resembles experimental situation and that cannot be ac-
cessed or explained by a plane-wave analysis. The rest of
the paper is organized as follows. In Section 2 dynamical
solutions for the slow medium and associated transverse
effects are considered. In particular, a case of a high-dif-
fraction dancing mode and a low-diffraction filamentation is
presented. In Section 3 fast-medium responses are dis-
cussed, including a case of a RTN scenario and interesting
inverse bifurcations occurring in strange-looking windows in
high-dimensional chaos. Section 4 is reserved for conclu-
sions.

2. SLOW MEDIUM

In this section we investigate the dynamical behavior of the
PCR in the limit when the medium response time (MRT) is
much longer than the cavity round-trip time. To reduce the
dimension of the parameter space, we consider only a plane,
perfectly reflecting normal mirror with no aperture in front
of it, and we assume that the medium is lossless. In actual
simulations, in addition to the pump intensity, we vary the
Fresnel number Fr (high/low diffraction), the n2 Kerr coeffi-
cient (focusing/defocusing medium), the spatial extent of
the pumps (plane/Gaussian), and the size of the spatial Fou-
rier frequency filter (number of Fourier components). Of
course, not all parameters will be varied here, nor will all the
possibilities be presented.

An overall description of the dynamical response of the
cavity is provided in Ref. 7. A typical case is presented in
Figs. 3-5, in which periodic and chaotic transverse beam
profiles are shown for a low-diffraction (Fr = 100) case with a
focusing medium, one plane and one Gaussian pump, and
above the self-oscillation threshold of the PCR. Figure 3
depicts the temporal evolution (over a few hundred MRT's)
of the beam profile for the pump intensity I, = 1.2 (in units
of the threshold intensity) when the width of the Gaussian
spatial frequency filter is varied. The filter, located in front
of the PCM, is introduced to reduce the influence of higher-
order spatial modes. In essence, it controls the number of
Fourier components used in the decomposition of the waves.
The level of truncation is found to influence the intracavity
dynamics strongly. Although we observe periodic changes
in the intracavity beam profile in Fig. 3(a) (with a period of
approximately 30 MRT's for the most pronounced harmon-
ics), the periodicity and the left-right transverse symmetry
of the beam is gone in Fig. 3(b), as the frequency window is
increased. Figure 4 shows the spatial Fourier spectrum of
the profiles from Fig. 3. Evidently, spatial chaotization of
the beam produces a widening in the spectral outlook of the
mode. More interestingly, in Fig. 5 we see that points at
different transverse locations of the beam execute different
periodic motions. This is seen even more clearly in the case
of high diffraction. However, when there is a sudden change
in the dynamics, which is due, for example, to an intermit-
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Fig. 11. (a) Field distribution and (b) the phase of the dancing transverse
repeating itself after 6 MRT's.
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IN

Fig. 12. Dynamical hysteresis loops caused by variable sweep rates
across the first bifurcation of the system in, Fig. 12. Two up and
down sweeps are performed. The large hysteresis loop is obtained
when the sweep raeeul l,=12 O, and the smaller one is
obtained when Alp = 3.125 X 1O-5. For the sweep rate 10O7, the
hysteresis is barely visible.
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tent chaotic burst or to a transient or terminal chaos, all
transverse points start to execute the new motion simulta-
neously.

In the case of a defocusing medium in a low-diffraction
geometry, with Gaussian pumps and without frequency fil-
tering, the axial Gaussian-like mode at the pump frequency
is found to survive up to Ip , 3.3. A further increase in Ip
results in the development of side-mode instabilities, which
eventually cause strong filamentation of the transverse
beam profile. A fairly stable, slowly expanding spiky trans-
verse structure results, reminiscent of Moloney'slo solitons

but actually representing a stripe mode in two transverse
dimensions. Such a mode would most likely become unsta-

ble if the other transverse dimension were included in our
calIculations. An example of the beam filamentation is

shown in Fig. 6, together with the behavior at different
spatial points across the beam. The periodic oscillatory
motion is seen to cease quickly, and irregular motion sets in.

The same effect is more pronounced at a higher pump inten-
sity (Fig. 7), where, although a quasi-stable spatial structure
exists (with occasional chaotic bursts in different fingers),

3.225 3,Z ..... . 2 27 3. 228 3. 29
IN

. . . . . . .

(d)

Fig. 13. (a) Bifurcation diagram past the period 4 of the forward-integrated intracaivity iitensity Ijf= f dxIEf(x)12 as a function of the pump in-

tenityI,, Th re onaor onfiguration is nearly confocaL R =09 h w e aei l,=1 -. Although it starts as a Feigenbaum, after

the accumulation point the diagram barely resembles the period-doubling scenario. (b) The enlarged marked section around period 10 and

period 14 windows from (a). In window 14 a sudden change in the attracting set is clearly visible. The marked area is zoomed and swept up in

(c and down in (d. The sweep rate for both up and down sweeps equals 2 X 10-7.
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Fig. 14. Suspicious-looking period 7 and 5 windows at I,4, 3.45
from Fig. 13(a). On reducing the sweep rate, the period 5 window
breaks into intermittent chaos.
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Fig. 15. (a) Very slow (10-7) sweep across the doublet branch in the
period 5 window and (b) intermittent time series of the adjacent
branch in the samne window (I = 3.442). Qualitatively they look
similar. The sweeping nature of the figure (a) can be inferred from
the slightly nonparallel arms in the doublet.
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varibus transverse sections of the beam produce apparently
chaotic temporal signals.

As a final example we consider a slowly focusing medium
in a high-diffraction geometry (Fr = 1). The forward pump
Fo is chosen plane, and the backward pump B0 is a Gaussian
focused on the PCM. This configuration is found to lower
the threshold for instabilities. The resonator starts to oscil-
late slightly above Ip = 1, and in Fig. 8 the dynamical behav-
ior of the mode is traced in the pump intensity range 1-9. It
is seen that the cavity response is gradual and symmetric in
the transverse direction, the side modes developing slowly,
and the spectrum becoming broader. However, at approxi-
mately Ip4- 7.5 the instability sets in, and there is an abrupt
change in the mode outlook. An asymmetric mode devel-
ops, whose temporal establishment can be followed in Fig. 9.
Its dynamical features are quite striking. First, similar to
the low-diffraction focusing case, different spatial points
across the beam execute different motions: from a simple
period 2 at the center of the beam (x = 0) to the period 6 at x
= 0.6 (in units of the backward pump beam waist). This
situation is presented in Fig. 10. The oscillations are now in
general more stable than the ones for low diffraction. More-
over, when the temporal development of the mode is fol-
lowed, we notice that the transverse profile is rhythmically
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Fig. 16. Fourier spectrum (a) in the periodic window at , = 3.445
and (b) in the chaotic region at , = 3.49.
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inverted about x = 0 every 3 MRT's. The same periodic
dance is observed in the phase of the wave (see Fig. 11).

3. FAST MEDIUM

In the case of a fast medium it is assumed that the cavity
round-trip time is much longer than the MRT. In this case
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Fig. 18. Poincar6 section through the strange attractor at Ip = 3.5
with a Lyapunov dimension DL 4.5.
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the problem can be reduced to a return map, which maps
intracavity fields after consecutive round trips in the cavity
onto each other. Such a description still keeps infinitely
dimensional phase space because one transverse dimension'
is specifically included. However, instead of concentrating
on the transverse effects, we will consider the overall re-
sponse of the cavity by looking at the integrated output
intensity at the PCM as a function of the pump-driving
intensity. The other relevant parameter will be the size of
the aperture placed in front of the normal mirror. Again,
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Fig. 19. Calculating the correlation dimension D2 of the strange
attractor at I, = 3.18. The dimension is found from the slope of the
C(r) function, which counts the number of pairs of points on the
attractor whose distance is less than r. The attractor is embedded
in m = 2, 4,. . ,14 dimensional Euclidian space, and the correlation
dimension of the attractor is found to be D2 = 2.435 ± 0.015.
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Fig. 20. Bifurcation diagram for a wide-open aperture, representing an example of a modified RTN route to chaos through few bifurcations of
an invariant circle.
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Fig. 21. Time series in the vicinity of the lower period 2 branch from Fig. 20 (Ip = 2.77), with exceedingly long transient chaos. Output
intensity of every second round trip is recorded. The period 2 oscillation looks rather like a long-lived wobbling 2 torus. Here, the system is
close to a Hopf bifurcation.
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Fig. 22. A series of Poincar6 sections and the corresponding spectra for different pump intensities across the transition region from Fig. 20.

(a) Spiraling into a fixed point at 4p = 2.77. The upper branch of the two period 2 branches from Fig. 20 is shown. Because of the long transient

behavior, bothfl 0.5 and f2 0.23 are seen in the spectrum. The third line in the spectrum is the image of f2 across the 1/4 frequency, a pecu-
liarity of the PCR. The five dotted lines seen in the background of the spectrum are a FFT artifact and have no significance. (b) Well-

established limit cycle at Ip = 2.775, with many f2 subharmonics. (c) Developing fractal limit cycle at I, = 2.805, with many subharmonic
satellites, ready to explode. (d) Vanishing of the old, and appearance of a new, limit cycle, I, = 2.81. The transient spectrum shows that some
lines are receding and that others are growing. (e) First bifurcation of a 2 torus to a 4 torus at Ip = 2.819. The spectrum now contains the har-
monics of f/ as well (at 0.25,0.125, etc.). (f) Further bifurcation at =2.8205. (g) The last bifurcation resolved at p = 2.8216. AtIp = 2.82165
frequency locking is observed: the continuous winding lines start to break into a number of dots. (h) Chaotic bands emerging at Ip = 2.8217,
with wide broadband chaotic spectrum rising. (i) Further development of chaos at I = 2.8225. (j) High-dimensional single-branch period 1
chaos at 4p = 2.825, with featureless spectrum and nine positive Lyapunov exponents.

the general description and performance of the model are
investigated in Refs. 7 and 8; we present and discuss some
interesting case studies not reported there.

Little is known about the transition to chaos in infinitely
dimensional systems. Farmer"' has considered the
Mackey-Glass time-delay differential equation, and his
findings will be used for comparison below. We find that
the route to chaos, as the pump intensity is increased,
strongly depends on the size of the aperture in front of the
normal mirror. For small openings it starts as a Feigen-
baum period-doubling single-mode scenario, much like the
one-dimensional model from Fig. 2. As the pump intensity
gets larger, it gradually acquires the more featureless forms
of high-dimensional chaos but occasionally with an interest-
ing periodic window structure. For large-aperture open-
ings, in contrast, it jumps quickly to high-dimensional chaos,
usually after only a few bifurcations.

We monitor the transition to chaos by using the different
tools at our disposal: bifurcation diagrams, Poincar6 sec-

tions, Fourier spectra, etc. For an example the spectrum of
Lyapunov exponents is calculated, and from it the change in
the Lyapunov dimension of attractors is inferred as a func-
tion of the pump intensity. Numerically, the procedure
differs from the case of a slow medium in that there is no
need to iterate a (infinitely dimensional) return map. Thus,
for a comparable CPU time (few minutes on a Cray XMP

computer), we are able to execute in excess of 105 cavity
computer), we are able to execute in excess of 105 cavity
round trips. After each round trip the pump intensity is
either slightly increased or left unchanged if we want to look
at a time series. The typical increase is of the order 10-5. In
this manner we tried to avoid strong dynamical effects and
spurious hysteresis behavior'2 in the bifurcation diagrams,
as seen in Fig. 12. Our criterion was that the upsweep and
the downsweep should coincide. Indeed, this was the case
for single-mode or one-dimensional plane-wave analyses, as
performed in Fig. 2. However, in some more complicated
cases the hysteresis effects persisted and were unaffected by
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Fig. 23. (a) Transverse profiles and (b) corresponding phase for six consecutive round trips in the fully developed chaos at Ip = 2.825.
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the slowdown in the sweep rate. In such cases we suspect
genuine optical bistability and mode competition to be in-
herent characteristics of the system.

We start by displaying one such instance in an example
already considered in Ref. 8. Its bifurcation diagram is
portrayed in Fig. 13. Initially it undergoes Feigenbaum
period doublings, which we were able to track down to peri-
od-256 oscillations. The small inset in Fig. 13(a) is enlarged
in Fig. 13(b), and the small inset in Fig. 13(b) is zoomed and
swept up and down in Figs. 13(c) and 13(d). It is seen that
the system suddenly jumps from one branch to the other and
from one attractor to the other. Such sudden changes in
attracting sets, or crises, are common in our system. The
sweep slowdown (to 10-7) and plotting of more transient
points also resolved more clearly the period-5 window situat-
ed in the interval p 3.44-3.45. The intermittent chaotic
nature of the window is more apparent as the sweep rate is
reduced: the window breaks into a number of periodic re-
gions separated by chaotic intervals (Fig. 14). The sweep
bifurcation diagrams then look much like the ordinary tem-
poral sequences, as displayed in Fig. 15.

Although it starts as a period 5, the system bifurcates
during chaotic bursts (intermittent Feigenbaum), and its
spectral content, as depicted in Fig. 16, is not simple. From
Fig. 16(b) it is clear that at Ip = 3.49 we already have fully
developed chaos, since individual spectral lines are gone and
a broadband noisy spectrum has risen. This is corroborated
further by looking at the spectrum of Lyapunov exponents
calculated in Fig. 17 for the intensity interval 3.1-5.0. It is
seen that the system becomes chaotic for the first time at Ip
- 3.15, corresponding to the accumulation point of the first

Feigenbaum sequence. At that point the second Lyapunov
exponent becomes positive, the first one (describing the in-
determinacy of the phase) remaining zero all the time. At
approximately Ip 3.44, a large dip in the Lyapunov spec-
trum occurs, corresponding to our period-5 window. After
Ip ~_3.5, the third Lyapunov exponent becomes positive,
after awhile the fourth one, etc., leading to high-dimensional
chaos.

The strange attractor that sets in after the last periodic
window is captured in Fig. 18. Its Lyapunov dimension DL

increases with the pump intensity and is DL - 3.0 at Ip =
3.18 and DL 4.5 at I = 3.5. The correlation dimension
was also calculated at 4= 3.18, and it amounted to D2 2.4
(Fig. 19). Hence the attractor is nonuniformly covered.
Also, the rate of increase in the DL dimension and in the
metric entropy decreases with Ip. This is in contrast to the
Mackey-Glass delay differential equation, where DL in-
creases linearly while the entropy is constant." 1 Further-
more, Lyapunov exponents in the Mackey-Glass system
converge to zero, and in the PCR they increase monotonical-
ly. Thus a chaotic attractor of a given dimension has more
unstable directions in the Mackey-Glass system than in the
PCR, but these are weakly chaotic in comparison with the
fewer, but strongly chaotic, directions of the PCR. A more
detailed discussion of the dimension and Lyapunov spec-
trum of our system is provided in Ref. 8.

The foregoing analysis is performed for a medium aper-
ture size: u = 1 in units of the pump beam waist. When the
aperture is wide open (u = 8 in the example that follows), a
completely different scenario emerges. Its bifurcation dia-
gram is depicted in Fig. 20. Any resemblance to Fig. 13
(even less to Fig. 2) is gone. The diagram past the sudden

transition at p 2.8 is featureless, characteristic of high-
dimensional chaos. Loosely speaking, opening of the aper-
ture increases the number of ways (or modes) in which the
system can develop, i.e., the size of (the portion of) the phase
space available to the system is enlarged. We investigated
the transition and found that it represents a case of a RTN
route of few bifurcations of a limit cycle, leading directly to
the fully developed chaos.

One of the first things noticed was an enormous prolonga-
tion of the transient response, as seen in Fig. 21. The system
tends to wander for thousands of round trips before settling
on an attractor. This necessitated killing of many tran-
sients before plotting bifurcation diagrams or Poincar6 sec-
tions. Nonetheless, such a situation is ideal for investigat-
ing the transient chaos and the structure of repellers'3

(which we did not perform). In some figures, however, we
deliberately kept the transients in order to emphasize some
less salient dynamical features.

The transition to chaos is depicted in a series of figures,
collected in Fig. 22. The left-hand column of figures in each
set represents a series of Poincar6 sections through the at-
tracting regions, and the right-hand column represents the
spectral content of the dynamics from the left [except for
Fig. 22(g)]. The spectrum is obtained by letting the time
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Fig. 24. Temporal development of the spectrum of Lyapunov ex-
ponents at the sudden jump from a low-dimensional chaos at Ip =
2.8225 in (a) to the high-dimensional RTN chaos at Ip = 2.825 in (b).
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(a)
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Fig. 25. Bifurcation diagrams for small aperture size, u = 0.7, and
nearly confocal resonator configuration, L/R = 0.9: (a) defocusing
medium, (b) focusing medium. Sudden changes of attractors are
noted in the windows around I = 4.0. Around Ip 4.1, in the
period 3 window remerging Feigenbaum trees are visible.

sequence Ifn of the forward-integrated intensity after each
round trip pass through a FFT analyzer and by squaring the
modulus afterward. By using this procedure and by keeping
in mind that we are dealing with a PCR, we see that the
whole frequency region encompasses only the interval 0-0.5
(in units of the inverse round-trip time).

At Ip = 2.77 the system is very close to a Hopf bifurcation.
It spirals down to a pair of fixed points corresponding to the
simple period-2 half-axial mode [Fig. 22(a)]. However, ex-
ceedingly long transients make it appear as a limit cycle,
with the second frequency located approximately at 0.23.
Taking into account that it spirals along 37 arms, the period
amounts to approximately 74 round-trip times. The dou-
blet seen in the spectrum is actually the 2 and its image
across the 1/4 frequency, another peculiarity of the PCR.
These frequencies are responsible for the beatings noted in
Fig. 21. At p = 2.775 the limit cycle is well established, and
higher-order harmonics of 2 are already seen as well. At Ip
= 2.805 it develops a kinky fractal structure, with many
harmonics visible in the spectrum, and at 2.81 it explodes,
yielding a different attractor [Fig. 22(d)]. The change from
a smooth curve to a fractal or a dotted one is an indication of
an imminent breakdown of the limit cycle. The new attrac-

tor on a downsweep is stable up to 4p = 2.805, which is when
the old one reappears. Such hysteresis effects, as in the
earlier case, indicate that more than one stable state or
attractor coexist in the phase space. This new limit cycle
contains harmonics of the leading 1/2 mode, and its second
frequency is much lower, f2 0.03. It readily bifurcates at
I, = 2.819, then again at 2.8205, and finally at 2.8216. At Ip
= 2.82165 a trace of frequency locking is observed and is
visible in the pair of Fig. 22(g). Frequency locking is a sign
of approaching transition to chaos, which actually happens
at Ip = 2.8217. In this respect our system is similar to fluid
turbulent Rayleigh-Bernard flows with a low aspect ratio.4,14

In the tiny interval that precedes the transition we were
unable to resolve any further bifurcations. At the pump
intensity of 2.825 (Fig. 23) we already observe high-dimen-
sional chaos with nine positive Lyapunov exponents [Fig.
24(b)]. Thus opening of the aperture puts at the system's
disposal many degrees of freedom or many unstable direc-
tions in which to grow.

On the contrary, reducing the aperture size inhibits the
system, which has a tendency of developing along Feigen-
baum-like one-dimensional scenarios. By even further re-

(a)

5.2 54 5.6 5.PUP INTENSITY

(b)
Fig. 26. Same as Fig. 25(b) but with a confocal configuration, L/R
= 1. The bifurcation diagrams are hardly distinguishable up to the
period 3 window. However, in the present case a strange-looking
period 4 window opens at 4, , 4.4, with primary period bubbles
forming at Ip 4 4.6. (b) A continuation of (a).
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duction in the size of the aperture (to values of u less than 1),

the system has even less space to develop, and because it is
dependent on more than one control parameter, the condi-
tions for appearance of reemerging period bifurcations are
met.15 Indeed, we observe such inverse bifurcations in an

infinitely dimensional dynamical system such as ours.
They are displayed without comment in Figs. 25 and 26.

4. CONCLUSIONS

In this paper we have investigated routes to optical turbu-
lence in a PCR. It is turbulence and not simply chaos
because, in addition to temporal chaos, strong modulations
and irregularities are observed in the spatial domain as well.
A rich variety of phenomena is observed, making nonlinear-

optical resonators, phase conjugate or not,'0 one of the pre-
mier physical systems for investigations (numerical or ex-
perimental) of the different paths to a turbulent state.

Our results indicate that a reliable and complete descrip-
tion of the dynamics and instabilities in the PCR requires
inclusion of the transverse effects. Dynamics that follow

from a two-dimensional plane-wave analysis, as exemplified

by Fig. 2, and from an infinitely dimensional transverse
model, as considered in the rest of the paper, do indeed differ
substantially.

In the case of a slow Kerr medium and for a low diffraction

geometry, two types of instability occur: slender, strongly
diffracting, asymmetric transverse modes in focusing media,
and modulational (Benjamin-Feir) spiky, but relatively sta-
ble, broader modes in defocusing media. High diffraction

offers a larger range of stable solutions (up to 4p _ 7.5) at the

pump frequency. At high enough pump intensity these
modes eventually become unstable, breaking the symmetry
and at first executing a periodic left-right dance. At still
higher intensities the PCR dynamics exhibits an intermit-
tent chaotic behavior with strong hysteresis effects. The
detailed understanding of these and other phenomena ob-
served in the transition to chaos in a PCR is rather poor at

present, but the results are in general agreement with the
trend in other fields of optical instability: The inclusion of
transverse effects introduces new instabilities, which can,
however, be reduced by the effects of diffraction.

A fast medium, with a, faster numerical scheme, permits
more comprehensive and detailed probing into the transi-
tion dynamics. A variety of possible routes to chaos is ob-

served, as described in Section 3. However, a note of cau-

tion is needed in light of the recent results of LeBerre et al.16
They showed that in a passive ring cavity there is no continu-

ous limit between the short but finite medium response time
and the instantaneous response time for a plane-wave mod-
el. In essence, they note that the routes to chaos are differ-
ent for a two-dimensional instantaneous and an oD time-
delay model, what is also found here. The results reported
here, however, are for an instantaneous response time (and

an -D model); however, we have also performed calculations

for a short MRT17 and found that in general they agree when

there are no instabilities that are shorter than the MRT in
the system. Nonetheless, notable differences persisted in
the dynamics; for example, no symmetry breaking of the

transverse profile was observed, and the system preferred to
go to chaos through a RTN scenario. Considerable mathe-
matical (numerical) difficulties in the treatment of the fast
but finite MRT models of a PCR in space and time still
preclude definitive comparisons and conclusions, at least for
the time being. Clearly, more work and more powerful com-

puters are needed to resolve this and many other dynamical
puzzles on the road to a better understanding of optical
turbulence.
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